Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Hydrogen production from hydrogen sulfide of Black sea in the process of low temperature catalytic decomposition of H2S

https://doi.org/10.15518/isjaee.2021.09.090-105

Abstract

The review is devoted to a very urgent problem of utilization of toxic hydrogen sulfide of the Black Sea for the production of hydrogen – a generally recognized environmentally friendly energy carrier of the future and a valuable chemical reagent. The possibilities of the recently discovered method of low-temperature catalytic decomposition of hydrogen sulfide (LTCDHS) for the production of hydrogen and elemental sulfur with the H2S conversion close to 100% are considered. Since this process is carried out at room temperature without the supply of thermal energy from the outside, the main attention is paid to the thermodynamic aspect of the implementation of this chemical transformation. The mechanism of the LTCDHS reaction on sulfide and metal catalysts is considered in the framework of the non-equilibrium thermodynamics of the irreversible processes for open systems, since this process is carried out at the expense of the internal chemical energy of the substrate molecules – hydrogen sulfide. On sulfide catalysts, the irreversible process of H2S decomposition proceeds through the stage of formation of disulfane, H2S2, as a key intermediate, and the reaction products are hydrogen and solid sulfur. The reaction proceeds through a series of successive exothermic stages of dissociation of hydrogen sulfide molecules, in which the entropy of the system decreases due to its scattering (dissipation) into the environment in the form of bound energy TΔS. The remaining part of the free en-ergy is accumulated on the surface of the catalyst and is used for the energy-consuming stage of decomposition of the adsorbed key intermediate. Similarly, a metal catalyst ensures the capture and accumulation of energy from the exothermic processes of adsorption and dissociation of the initial hydrogen sulfide molecules into the atomic adsorbed state of hydrogen and sulfur. The stored energy is used for the chemical transformation of the adsorbed intermediates into the final products of the reaction: molecular hydrogen and diatomic triplet sulfur, followed by their desorption into the gas phase. When hydrogen sulfide is decomposed on metal catalysts at room temperature, along with hydro-gen, a previously unknown diatomic gaseous sulfur is obtained in the ground triplet state, the existence of which is predicted by quantum chemistry. Some properties of triplet sulfur and white globular hexagonal sulfur obtained from its saturated aqueous solutions, which is a previously unknown allotrope of solid sulfur, are considered. The concept of the crucial role of catalysts in the process of LTCDHS is formulated. Depending on the type of catalysts (sulfide or metal), the LTCDHS reaction proceeds via two different routes due to the use of the internal energy of the substrate molecules – hydrogen sulfide. It is concluded that the proposed LTCDHS method is the most acceptable (from the point of view of energy, ecology and economics) technology for the utilization of hydrogen sulfide in the Black Sea to obtain the target product – hydrogen, and a valuable chemical commodity product – elemental sulfur. However, the developed method of LTCDHS goes far beyond the considered problem of the Black Sea. This development can be easily adapted to the existing industrial processes of toxic hydrogen sulfide utilization by the Claus method, when instead of high - temperature, metal- and energy-intensive processes of hydrogen sulfide processing, its catalytic low-temperature decomposition processes will come to obtain the target product - hydrogen. Therefore, hydrogen sulfide as a source of hydrogen production by the LTCDHS method can help to solve the problem of hydrogen energy developing in the near future.

About the Author

A. N. Startsev
Joint Stock Company “Depth Energy”
Russian Federation

Startsev Anatolii Nikolaevich, present-Deputy. Director of Science

123112 Moscow



References

1. 1. Baikara S. Z. , Figen I. KH. , Kale A. , Vezi-roglu T. N. Poluchenie vodoroda iz serovodoroda v Chernom more. // Alternativnaya ehnergetika i ehkologiya. - 2019. № 1. S. 49-55.

2. Tseizer G.M., Klimov E.I., Solomin E.V., Ezhikov N.I. Problemy dobychi i ispol'zovaniya chernomorskogo serovodoroda. // Alternativnaya ehnergetika i ehkologiya. - 2013. - № 136. S. 14-18.

3. Proceedings of the NATO Advanced Research Workshop on: The Black Sea: Strategy for Addressing its Energy Resource Development and Hydrogen Energy Problems. Batumi, Georgia7–10 October 2012. https://link.springer.com/book/10.1007/978-94-007-6152-0. Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC). Editors Ayfer Veziroğlu, Marat Tsitskishvili (2013).

4. Maksimenko T. Kak postavit' serovodorod Chernogo morya na sluzhbu lyudyam? // https://shkolazhizni.ru/world/articles/13133/.

5. https://travelask.ru/blog/posts/9820-chernoemore-samoe-opasnoe-v-mire-hranilische-serovodoroda.

6. https://rurik-l.livejournal.com/320664.html.

7. Neretin L.N., Volkov I.I., Bottcher M.E., Grinenko V.A. A sulfur budget for the Black Sea anoxic zone. // Deep-Sea Research, I. – 2001. – V. 48. P. 2569 - 2593.

8. Kashiya V.G. Ehkologicheski chistye metody osvoeniya vodorodosoderzhashchikh komponentov chernogo morya. // Al'ternativnaya ehnergetika i ehkologiya. – 2004. - № 2. S. 10.

9. Neklyudov I.M., Borts B.V., Polevich O.V., Tkachenko V.I., Shilyaev B.A. Al'ternativnaya serovo-dorodnaya ehnergetika chernogo morya. sostoyanie, problemy i perspektivy. Chast' І. // Al'ternativnaya ehnergetika i ehkologiya. - 2006. - №.12. .23.

10. Midili A., Ay M., Kale A., Veziroglu T.N. A parametric investigation of hydrogen energy potential based on H2S in Black Sea deepwaters. // Int. J. Hydro-gen Energy. – 2007. – V. 32. P. 117.

11. Midilli A., Ay M., Dincer I., Rosen M.A. On hydrogen and hydrogen energy strategies: I: current status and needs // Renewable Sustainable Energy Rev, - 2005. – V. 9. No 3. P. 255-271.

12. Neklyudov I.M., Azarenkov N.A., Borts B.V., Polevich O.V., Tkachenko V.I. Al'ternativnaya sero-vodorodnaya ehnergetika Chernogo morya. II. Ehnerget-icheski vygodnye sposoby izvlecheniya serovodorodnoi vody s zadannykh glubin. // Al'ternativnaya ehnergetika i ehkologiya. – 2007. - № 9 (53). S. 35-41.

13. Naman S.A., Tur I.EH., Veziroglu T.N.. Pilotnaya promyshlennaya ustanovka po desorbtsii H2S iz vody Chernogo morya. // Al'ternativnaya ehnergetika i ehkologiya. - 2017. - № 22-24. S.

14. Zaman J., Chakma A. Production of hydrogen and sulfur from hydrogen sulfide. // Fuel Processing Technology. 1995. – 41. P. 159-198.

15. Luinstra E.A. Hydrogen from H2S: Technolo-gies and Economics. Sulfotech Research, May 1995. http://www.worldcat.org/title/hydrogen-from-h2s-technologies-andeconomics/oclc/70412892 .

16. Startsev A. N. Serovodorod kak istochnik polucheniya vodoroda. // Izv. AN, Ser. khim., 2017, № 8, s. 1378-1397. ISSN 1026_3500. DOI: 10.1007/s11172-017-1900-y.

17. Hydrogen from Hydrogen Sulphide: Technology Scan and Evaluation Prepared for COSIA by DeLude Consulting Inc. June 8, 2017.

18. Startsev A.N., Zakharov I.I., Voroshina O.V., Pashigreva A.V., Parmon V.N. Nizkotemperaturnoe razlozhenie serovodoroda v usloviyakh sochetaniya sopryazhennoi khemosorbtsii i kataliza. // Doklady AN. 2004. T. 399. № 2, s. 217-220.

19. Zakharov I.I., Startsev A.N., Voroshina O.V., Pashigreva A.V., Chashkova N.A., Parmon V.N. Molekulyarnyi mekhanizm nizkotemperaturnogo razlozheniya serovodoroda v usloviyakh sochetaniya sopryazhennoi khemosorbtsii i kataliza. // ZH. Fiz. Khim. 2006. T. 80. № 9, s. 1589-1596.

20. Startsev A.N., Kruglyakova O.V., Chesalov Yu.A., Ruzankin S.Ph., Kravtsov E.A., Larina T.V., Paukshtis E.A. Low Temperature Catalytic Decomposition of Hydrogen Sulfide into Hydrogen and Diatomic Gaseous Sulfur. // Topics in Catalysis. 2013, V. 56. P. 969-980.

21. Startsev A.N., Kruglyakova O.V. Diatomic Gaseous Sulfur obtained at Low Temperature Catalytic Decomposition of Hydrogen Sulfide. // J. Chem. Chem. Eng. 2013, V. 7. P. 1007-1013.

22. Startsev A.N. Kruglyakova, O.V., Ruzankin S.F., Bulgakov N.N., Chesalov YU.A., Kravtsov E.A., Zheivot V.I., Larina T.V., Paukshtis E.A. Osobennosti nizkotemperaturnogo kataliticheskogo razlozheniya serovodoroda // ZH. Fiz. Khim. 2014. T. 88. S. 943-956. DOI: 10.7868/S004445371406034X.

23. Startsev A.N., Bulgakov N.N., Ruzankin S.Ph., Kruglyakova O.V., Paukshtis E.A. The reaction thermo-dynamics of hydrogen sulfide decomposition into hydro-gen and diatomic sulfur.// J. Sulfur Chem., 2015. V. 36. N. 3. P. 234–239.

24. Startsev A.N. Nizkotemperaturnoe kataliticheskoe razlozhenie serovodoroda s polucheniem vodoroda i dvukhatomnoi gazoobraznoi sery // Kinetika i kataliz. 2016. T. 57. S. 516-528. - DOI: 10.7868/S0453881116040122.

25. Startsev A. N. Diatomic sulfur: a mysterious molecule. // Journal of Sulfur Chemistry, 2019. - 40:4, P. 435-450, DOI: 10.1080/17415993.2019.1588273.

26. Startsev A.N. The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: non-equilibrium thermodynamics of the irreversible process in an open system. // Molec. Catal. 2020. 497. 111240. http://doi.org/10.1016/j.mcat.2020.111240.

27. Startsev A.N., Pashigreva A.V., Voroshina O.V., Zakharov I.I., Parmon V.N., // Patent RF № 2,261,838, opubl. 10.10.2005.

28. Startsev A.N., Kruglyakova O.V., Chesalov Yu. A., Paukshtis E.A., Avdeev V.I., Ruzankin S.Ph., Zhdanov A.A., Molina I. Yu., Plyasova L.M. Low temperature catalytic decomposition of hydrogen sulfide on met-al catalysts under layer of solvent. // J. Sulf. Chem., 2016. V. 37. N. 2. P. 229-240. DOI: 10.1080/17415993.2015.1126593.

29. Smirnov B.M., Yatsenko A.S. Dimery. Novo-sibirsk, «NaukA», 1997.

30. Kearns D.R. Physical and chemical properties of singlet molecular oxygen. // Chem. Rev., 1971. V. 71. N. 4. P. 395—427. DOI: 10.1021/cr60272a004.

31. Schweitzer C., Schmidt R. Physical Mechanisms of Generation and Deactivation of Singlet Oxy-gen. // Chem. Rev. 2003, V. 103. N. 5. 1685—1757. DOI: 10.1021/cr010371d .

32. Benson S.W. Thermochemistry and Kinetics of Sulfur-Containing Molecules and Radicals. // Chemical Reviews, 1978, Vol. 78. No 1. P. 23-35.

33. Prigozhin I.R. Vvedenie v termodinamiku neobratimykh protsessov. – 2001. Izhevsk: NITS «Regulyarnaya i khaoticheskaya dinamikA». 160 s. ISBN 5-93972-036-6. (per. s angl.: I. Prigogine, Introduction to thermodynamics of irreversible processes, Sprinfild, Illinois, U.S.A., 1955).

34. Parmon V. N. Termodinamika neravnovesnykh protsessov dlya khimikov. S prilozheniem k khimicheskoi kinetike, katalizu, materialovedeniyu i biologii: Uchebnoe posobie. Dolgoprudnyi: Izdatel'skii dom «In-tellekT», 2015. – 472 s.

35. Fokin B.S. Osnovy neravnovesnoi termodi-namiki. : Izd-vo Politekhnicheskogo universiteta. Sankt-Peterburg. 2013. 214 s.

36. Haynie D.T. Biological Thermodynamics. Second edition. 2008. Cambridge University Press. The Edinburgh Building, Cambridge CB2 8RU, UK.

37. Lodish H., Berk A. Molecular Cell Biology (8th edition). 2016. New York: W. H. Freeman. 1280 p. ISBN-10: 1464183392.

38. Startsev A.N. Sul'fidnye katalizatory gidroochistki: sintez, struktura, svoistva. Novosibirsk: GEO, 2007. 206 s.

39. Koestner R.J. , Salmeron M. , Kollin E.B. , Gland J.L. Adsorption and surface reactions of H2S on clean and S-covered Pt(111).// Surf. Sci., 1986, V. 172, No 3, P. 668.

40. Speller S., Rauch T., Bomermann J., Borrmann P., Heiland W. Surface structures of S on Pd (111). // Surf. Sci., 1999, V. 441. N. 1. P. 107-116.

41. Fisher G.B. Photoemission studies of H2S, H2 and S adsorbed on Ru(110): Evidence for an adsorbed SH species.// Surf. Sci., 1979, V. 87. N. 1. P. 215-227.

42. Hung W.-H., Chen H.-C., Chang C.-C., Hsieh J.-T., Hwang H.-L. Adsorption and decomposition of H2S on InP (100). // J. Phys. Chem. B, 1999. P. 3663-3668.

43. Alfonso D.R. First-principles studies of H2S ad-sorption and dissociation on metal surfaces. // Surf. Sci., 2008, V. 602. P. 2758–2768. DOI: 10.1016/j.susc.2008.07.001.

44. Vedeneev V.I., Gurvich L.V., Kondrat'ev V.N., Medvedev V.A., Frankevich E.L. Ehnergii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k ehlektronu. Spravochnik. // M., AN SSSR. 1962.

45. Darwent B. de B. Bond Dissociation Energies in Simple Molecules. 1970. NSRDS - NBS 31. Washington, DC: U.S. National Bureau of Standards. LCCN 70602101.

46. Rodriguez J.A., Hrbek J., Kuhn M., Jirsak T., Chaturvedi S., Maiti A. Interaction of sulfur with Pt(111) and Sn/Pt(111): Effects of coverage and metal–metal bonding on reactivity toward sulfur. // J. Chem. Phys., 2000, V. 113. P. 11284-11292.

47. K. Christmann, G. Ertl. Interaction of hydrogen with Pt (111): The role of atomic steps. // Surf. Sci. V 60, No 2, P. 365-384.

48. Poelsema B., Lenz K., Comsa G. The dissociative adsorption of hydrogen on defect-"free"Pt(111). // J Phys: Condens. Matter , 2010. V. 22. P. 1-10.

49. Boreskov G.K. Geterogennyi kataliz. M., Nau-ka, 1986. s. 3.

50. Startsev A.N., Kruglyakova O.V., Chesalov YU.A., Kravtsov E.A., Serkova A.N., Suprun E.A., Salanov A.N., Zaikovskii V.I. Vodnye rastvory sery, polu-chennoi pri nizkotemperaturnom kataliticheskom razlozhenii serovodoroda. // ZH. Fiz. Khim, 2015, t. 89, № 1, s. 24-28. DOI: 10.7868/S0044453715010252.


Review

For citations:


Startsev A.N. Hydrogen production from hydrogen sulfide of Black sea in the process of low temperature catalytic decomposition of H2S. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):90-105. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.090-105

Views: 1289


ISSN 1608-8298 (Print)