

Co-pyrolysis of agricultural waste and estimation of pyrolysis applicability in the integrated technology of biorenewable hydrogen production
https://doi.org/10.15518/isjaee.2021.09.124-146
Abstract
For the production of biorenewable hydrogen, the possibility of using pyrolysis of agricultural waste, namely cow dung and stems of weeds Amaranthus retroflexus L. (AR), as well as their mixtures in a ratio of 1:1, 2: 1 and 4:1, was investigated. Thermogravimetric analysis was carried out at a heating rate of 10°C / min in the temperature range from 40°C to 1000°C. It was shown that the thermal decomposition of agricultural waste in an inert environment is characterized by three main stages, the most significant of which is in the temperature range from 145 to 410 C, at which the maximum yield of volatile components occurs. Pyrolysis was carried out at a temperature of 550°C and a heating rate of 10°C / min. During the pyrolysis of a mixture of agricultural waste, the material balance was on aver-age as follows: 36.95% pyrolysis liquid, 24.99% syngas and 38.06% biochar, and the maximum hydrogen concentra-tion in the resulting pyrolysis gas was 21.17% with cow dung to AR ratio of 4:1. With this ratio, the hydrogen yield was 12.1% higher than when using a mixture with a 1: 1 ratio. An increase in the AR fraction enriched the pyrolysis liquid with phenolic compounds. The high content of fixed carbon (47.52%) in biochar is attractive for its use as soil additives. For further research on increasing the yield of gaseous hydrogen from biomass, a scheme of bio-thermochemical processing was proposed, involving a combination of dark fermentation and pyrolysis.
About the Authors
J. V. KaraevaRussian Federation
Julia V. Karaeva, Leading Researcher, laboratory of Energy Systems and Technolo-gies, candidate of technical sciences
420111, Kazan, st. Lobachevsky, 2/31, PO Box 190, Russia
S. S. Timofeeva
Russian Federation
Svetlana S. Timofeeva, Senior Researcher, la-boratory of Energy Systems and Technologies, candidate of technical sciences
420111, Kazan, st. Lobachevsky, 2/31, PO Box 190, Russia
A. A. Kovalev
Russian Federation
Andrey A. Kovalev, senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of tech-nical sciences
109428, Moscow, 1st Institutskiy Proezd, Building 5, Russia
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev, head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences
109428, Moscow, 1st Institutskiy Proezd, Building 5, Russia
M. F. Gilfanov
Russian Federation
Marat F. Gilfanov, Engineer, Department of Chemical Technology of Wood
420015, Kazan, st. Karl Marx, 68, Russia
V. S. Grigoriev
Russian Federation
Victor S. Grigoriev, chief researcher of the laboratory of bioenergy and supercritical technologies, doctor of technical sciences candidate of chemical sciences
109428, Moscow, 1st Institutskiy Proezd, Building 5, Russia
Yu. V. Litti
Russian Federation
Yuriy V. Litti, Russian Academy of Sciences, Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences
119071, Moscow, Leninsky prospect, 33, building 2, Russia
References
1. Leichang C., Iris K.M., Xinni X., Daniel C.W., Shicheng Z., James H.C., Changwei H., Yun H.N., Jin S., Yong S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research. Vol. 186, 2020, 109547. https://doi.org/10.1016/j.envres.2020.109547.
2. Mishra P., Krishnan S., Rana S., Singh L., Sakinah M., Wahid Z.A. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Reviews. Vol. 24, 2019, pages 27-37. https://doi.org/10.1016/j.esr.2019.01.001.
3. Lepage T., Kammoun M., Schmetz Q., Richel A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy. Vol. 144, 2021, 105920. https://doi.org/10.1016/j.biombioe.2020.105920.
4. Antonini K., Treyer K., Moioli E., Bauer K., Schildhauer T.J., Mazzotti M. Hydrogen from wood gasification with CCS – a techno-environmental analysis of production and use as transport fuel. Sustainable Energy and Fuels. Issue 10, 2021. https://doi.org/10.1039/D0SE01637C.
5. Bakhtyari A., Makarem M.A., Rahimpour M.R. Hydrogen production through pyrolysis. Encyclopedia of sustainability science and technology. 2018. https://doi.org/10.1007/978-1-4939-2493-6_956-1.
6. Grams J., Ryczkowski R., Sadek R., Chałupka K., Przybysz K., Casale S., Dzwigaj S. Hydrogen-rich gas production by upgrading of biomass pyrolysis vapors over NIBEA catalyst: Impact of dealumination and preparation method. Energy Fuels. Vol. 34, Issue 12, 2020, pages 16936–16947. https://doi.org/10.1021/acs.energyfuels.0c02958.
7. Xiaoxian L., Lilong Z., Shanshan W., Yulong W. Recent advances in aqueous-phase catalytic con-versions of biomass plat form chemicals over heterogeneous catalysts. Frontiers in Chemistry. 2020. https://doi.org/10.3389/fchem.2019.00948.
8. Vaidya P.D., Lopez-Sanchez J. Review of hydrogen production by catalytic aqueous-phase reforming. Chemistry Select. Vol. 2, Issue 13, 2017. https://doi.org/10.1002/slct.201700905.
9. Najser J., Buryan P., Skoblia S., Frantik J., Kielar J., Peer V. Problems related to gasification of biomass - properties of solid pollutants in raw gas. Energies. Vol. 12, 2019, page 963. https://doi.org/10.3390/en12060963.
10. Chowdhury Z. Z., Kaushik P., Wageeh A. Y., Suresh S., Syed T.S., Ganiyu A. A., Emy M., Rahman F.R., Rafie B.J. Pyrolysis: a sustainable way to generate energy from waste (Chapter 1), 2017. https://www.intechopen.com/chapters/56034.
11. Czajczyńska D., Anguilano L., Ghazal H., Krzyżyńska R., Reynolds A.J., Spencer N., Jouhara H. Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress. Vol. 25, 2021, pages 171-197. https://doi.org/10.1016/j.tsep.2017.06.003.
12. Sharifzadeh M., Miao G., Tohid N. B., Konda M., Garcia C., Lei W., Hallet J. Shah N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science. Vol. 71, 2019, pages 1-80. https://doi.org/10.1016/j.pecs.2018.10.006.
13. Gin A.W., Hassan H., Ahmad M.A., Hameed B.H., Mohd Din A.T. Recent progress on catalytic copyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters. Arabian Journal of Chemistry. Vol. 14, Issue 4, 2021, 103035. https://doi.org/10.1016/j.arabjc.2021.103035.
14. Rodriguez J.A., Filho J.F.L., Melo L.C.A., de Assis I.R., de Oliveira T.S. Co-pyrolysis of agricultural and industrial wastes changes the composition and stability of biochars and can improve their agricultural and environmental benefits. Journal of Analytical and Applied Pyrolysis. Vol. 155, 2021, 105036. https://doi.org/10.1016/j.jaap.2021.105036.
15. Wang X., Deng S., Tan H., Adeosun A., Vujanović M., Yang F., Duić N. Synergetic effect of sewage sludge and biomass co-pyrolysis: a combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Conversion and Management. Vol. 118, 2016, pages 399-405. https://doi.org/10.1016/j.enconman.2016.04.014.
16. Hanif M.U., Capareda S.C., Kongkasawan J., Iqbal H., Arazo R.O., Baig M.A. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study. PLOS ONE. Vol. 11(7), 2016, e0156565. https://doi.org/10.1371/journal.pone.0152230.
17. Logan B.E., Call D., Cheng S., Hamelers H.V.M., Sleutels T.H.J.A., Jeremiasse AW, Rozenda R.A. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science and Technology. Vol. 42, 2008, pages 8630–8640. http://dx.doi.org/10.1021/es801553z.
18. Kovalev A.A., Kovalev D.A., Litti Yu.V., Katraeva I.V. Biohydrogen production in the two-stage process of anaerobic bioconversion of organic matter of liquid organic waste with recirculation of digester effluent. International Journal of Hydrogen Energy. 2020, https://doi.org/10.1016/j.ijhydene.2020.07.124.
19. Litti YU.V., Kovalev D.A., Kovalev A.A., Merkel' A.YU., Vishnyakova A.V., Russkova YU.I., Nozhevnikova A.N. Avtoselektsiya mikroorganizmov izbytochnogo aktivnogo ila, ispol'zovannogo v kachestve inokulyata pri temnovom poluchenii biovodoro-da iz substratov s raznym biopolimernym sosta-vom. Al'ternativnaya ehnergetika i ehkologiya. № 28-30 (350-352), 2020, str. 67-87. https://doi.org/10.15518/isjaee.2020.10.007.
20. Litti YU.V., Kovalev A.A., Kovalev D.A., Katraeva I.V., Parshina S.N., Zhuravleva E.A., Boch-kova E.A. Kharakteristiki protsessa polucheniya biovodoroda iz prostykh i kompleksnykh substratov s raznym biopolimernym sostavom. Al'ternativnaya ehnergetika i ehkologiya. № 25-27 (347-349), 2020, str. 107-121. https://doi.org/10.15518/isjaee.2020.09.010.
21. Lee K.-S., Chen S.-L., Lin C.-Y., Chang J.-S. Converting waste molasses liquor into biohydrogen via dark fermentation using a continuous bioreactor. International Journal of Hydrogen Energy. Vol. 46, Issue 31, 2021, pages 16546-16554. https://doi.org/10.1016/j.ijhydene.2021.02.101.
22. Alavi-Borazjani S.A., da Cruz Tarelho L.A., Capela M.I. Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. International Journal of Hydrogen Energy. Vol. 46, Issue 41, 2021, pages 21372-21382. https://doi.org/10.1016/j.ijhydene.2021.04.017.
23. Khongkliang P., Jehlee A., Kongjan P., Reungsang A., O-Thong S. High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. International Journal of Hydrogen Energy. Vol. 44, Issue 60, 2019, pages 31841-31852. https://doi.org/10.1016/j.ijhydene.2019.10.022.
24. Rai P.K., Singh S.P. Integrated dark-and photofermentation: Recent advances and provisions for improvement. International journal of hydrogen energy. Vol. 41, Issue 44, 2016, pages 19957-19971. https://doi.org/10.1016/j.ijhydene.2016.08.084.
25. Bakonyi P., Kumar G., Koók L., Tóth G., Ró- zsenberszki T., Bélafi-Bakó K., Nemestóthy N. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons. Bioresource technology. Vol. 251, 2018, pages 381-389. https://doi.org/10.1016/j.biortech.2017.12.064.
26. Wang A., Sun D., Cao G., Wang H., Ren N., Wu W.M., Logan B.E. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource technology. Vol. 102, Issue 5, 2011, pages 4137–4143. https://doi.org/10.1016/j.biortech.2010.10.137.
27. Gude V.G. Integrating bioelectrochemical systems for sustainable wastewater treatment. Clean Technologies and Environmental Policy. Vol. 20, 2018, pages 911–924. https://doi.org/10.1007/s10098-018-1536-0.
28. Jiang H., Wu Y., Fan H., Ji J. Hydrogen Production from Biomass Pyrolysis in Molten Alkali. AASRI Procedia. Vol. 3, 2012, pages 217 – 223. https://doi.org/10.1016/j.aasri.2012.11.036.
29. Arregi A., Lopez G., Amutio M., Barbarias I., Bilbao J., Olazar M. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. RSC Advances. Vol. 6, Issue 31, 2016, pages 25975-25985. https://doi.org/10.1039/C6RA01657J.
30. Yao D., Hu Q., Wang D., Yang H., Wu C., Wang X., Chen H. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology. Vol. 216, 2016, pages 159-164, https://doi.org/10.1016/j.biortech.2016.05.011.
31. Panwar N.L., Pawar A., Salvi B.L. Comprehensive review on production and utilization of biochar. SN Applied Sciences. Vol. 1, 2019, 168. https://doi.org/10.1007/s42452-019-0172-6.
32. Dai L., Wang Y., Liu Y., He C., Ruan R., Yu Z., Jiang L., Zeng Z., Wu Q. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Science of The Total Environment. Vol. 749, 2020, 142386. https://doi.org/10.1016/j.scitotenv.2020.142386.
33. Karaeva J.V., Timofeeva S.S., Bashkirov V.N., Bulygina K.S. Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass. Biomass Conversion and Biorefinery. 2021. https://doi.org/10.1007/s13399-020-01138-6.
34. Sher F., Iqbal S. Z., Hao L., Imran M., Snape C. E. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management. Vol. 203, 2020, 112266. https://www.sciencedirect.com/science/article/pii/S0196890419312725#s0085.
35. Gil'fanov M.F., Bashkirov V.N., Faizrakhmanova G.M., Zabelkin S.A., Grachev A.N., Khalitov A.Z., Zemskov I.G. Issledovanie termokhimicheskogo metoda pererabotki organicheskikh otkhodov agropromyshlennogo kompleksa, derevoobrabatyvayushchei i lesnoi promyshlennosti. Vestnik Kazanskogo tekhnologicheskogo universiteta. T. 15, №18, 2012, S. 66-68.
36. Parthasarathy P., Al-Ansari T., Mackey H.R., McKay G. Effect of heating rate on the pyrolysis of camel manure. Biomass conversion and biorefinery. 2021. https://doi.org/10.1007/s13399-021-01531-9.
37. Yogalakshmi K.N., Poornima D.T., Sivashanmugam P., Kavitha S., Kannah Y.R., Varjani S., Adish K.S., Gopalakrishnan K., Banu J.R. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere. Vol. 286, Part 2, 2022, 131824 https://doi.org/10.1016/j.chemosphere.2021.131824.
38. Iftikhar M., Asghar A., Ramzan N., Sajjadi B., Chen W. Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass and Bioenergy. Vol. 122, 2019, pages 1-16. https://doi.org/10.1016/j.biombioe.2019.01.005.
39. Mijailovic I., Radojicic V., Ećim-Djurić O., Stefanović G., Kulic G. Energy potential of tobacco stalks in briquettes and pellets production. Journal of Environmental Protection and Ecology. Vol. 15, 2014, pages 1034-1041.
40. Vuppaladadiyam A.K., Liu H., Zhao M., Soomro A.F., Memon M.Z., Dupon V. Thermogravimetric and kinetic analysis to discern synergy during the copyrolysis of microalgae and swine manure digestate. Biotechnology for Biofuels. Vol. 12, 2019, 170. https://doi.org/10.1186/s13068-019-1488-6.
41. Otero M., Lobato A., Cuetos M.J., Sanchez M.E., Gomez X. Digestion of cattle manure: Thermogravimetric kinetic analysis for the evaluation of organic matter conversion. Bioresource Technology. Vol.102, 2011, pages 3404–3410. https://doi.org/10.1016/j.biortech.2010.10.016.
42. Hashemi B., Sarker S., Lamb J.J., Lien K.M. Yield improvements in anaerobic digestion of lignocellulosic feedstocks. Journal of cleaner production. Vol. 288, 2021, 125447. https://doi.org/10.1016/j.jclepro.2020.125447.
43. Atienza-Martínez M., Ábrego J., Gea G., Marías F. Pyrolysis of dairy cattle manure: evolution of char characteristics. Journal of Analytical and Applied Pyrolysis. Vol. 145, 2020, 104724. https://doi.org/10.1016/j.jaap.2019.104724.
44. Cantrell K.B., Martin J.H., Ro K.S. Application of thermogravimetric analysis for the proximate analysis of livestock wastes. Biofuels. Vol. 7, Issue 3, 2010, pages 225-247. https://doi.org/10.1520/STP49355S.
45. Wang S., Dai G., Yang H., Luo Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science. Vol.62, 2017, pages 33–86. https://doi.org/10.1016/j.pecs.2017.05.004.
46. Akor C.I., Osman A.I., Farrell C., McCallum C.S., Doran W.J., Morgan K., Harrison J., Walsh P.J., Shel-drake G.N. Thermokinetic study of residual solid digestate from anaerobic digestion. Chemical Engineering Journal. Vol. 206, 2021, 127039. https://doi.org/10.1016/j.cej.2020.127039.
47. Lee H.V., Hamid S.B.A., Zain S.K. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal. Vol. 2014, 2014, 631013. https://doi.org/10.1155/2014/631013.
48. Wei Y., Honga J., Ji W. Thermal characterization and pyrolysis of digestate for phenol production. Fuel. Vol. 232, 2018, pages 141-146. https://doi.org/10.1016/j.fuel.2018.05.134.
49. Bartocci P., Tschentscher R., Stensrød R.E., Barbanera M., Fantozzi F. Kinetic analysis of digestate slow pyrolysis with the application of the master-plots method and independent parallel reactions scheme. Molecules. Vol. 24, Issue 9, 2019, 1657 https://doi.org/10.3390/molecules24091657.
50. Jun H., Xiaoxiang J. Pyrolysis characteristics and kinetics of lignin: effect of starting lignins. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. https://doi.org/10.1080/15567036.2020.1860160.
51. Wang D., Jiang P., Zhang H., Yuan W. Biochar production and applications in agro and forestry systems: A review. Science of the Total Environment. Vol. 723, 2020, 137775. https://doi.org/10.1016/j.scitotenv.2020.137775.
52. Jiang G., Nowakowski D.J., Bridgwater A.V. A systematic study of the kinetics of lignin pyrolysis. Thermochimica acta. Vol. 498, 2010, pages 61–66. https://doi.org/10.1016/j.tca.2009.10.003.
53. Cárdenas-Aguiar E., Gascób' G., Paz-Ferreiroc J., Méndez A. Thermogravimetric analysis and carbon stability of chars produced from slow pyrolysis and hydrothermal carbonization of manure waste. Journal of Analytical and Applied Pyrolysis. Vol. 140, 2019, pages 434–443. https://doi.org/10.31857/S0040364420050051.
54. Tsai W.-T., Huang P.-C., Lin Y.-Q. Characterization of biochars produced from dairy manure at high pyrolysis temperatures. Agronomy. Vol. 9, Issue 634, 2019, https://doi.org/10.3390/agronomy9100634.
55. Lupez-Gonzalez D., Fernandez-Lopez M., Valverde J.L., Sanchez-Silva L. Thermogravimetricmass spectrometric analysis on combustion of lignocellulosic biomass. Bioresource Technology. Vol. 143, 2013, pages 562–574. http://dx.doi.org/10.1016/j.biortech.2013.06.052.
56. Fernandez-Lopez M., Parascanu M.M., LópezGonzález D., Soreanu G., Avalos-Ramírez A., Sanchez P., Valverde J.L., Sanchez-Silva L. Catalytic and noncatalytic pyrolysis of biologically treated manure. Environmental Engineering and Management Journal. Vol. 14, No. 2, 2015, pages 349–355. https://doi.org/10.30638/eemj.2015.035.
57. Hu M., Chen Z., Guo D., Liu C., Xiao B., Hu Z., Liu S. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresource Technology. Vol. 177, 2015, pages 41-50. https://doi.org/10.1016/j.biortech.2014.11.061.
58. Chen Z., Zhu Q., Wang X., Xiao B., Liu S. Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Conversion Management. Vol. 105, 2015, pages 251–259. https://doi.org/10.1016/j.enconman.2015.07.077.
59. Yang H., Yan R., Chen H., Lee D. H., Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. Vol. 86, Issue 12–13, 2007, pages 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013.
60. Itoh T., Fujiwara N., Iwabuchi K., Narita T., Mendbayar D., Kamide M., Niwa S., Matsumi Y. Effects of pyrolysis temperature and feedstock type on particulate matter emission characteristics during biochar combustion. Fuel Processing Technology. Vol. 204, 2020, 106408, https://doi.org/10.1016/j.fuproc.2020.106408.
61. Gombau J., Vignault A., Pascual O., Canals J.M., Teissedre P.L., Zamora F. Influence of supplementation with different oenological tannins on malvidin-3- monoglucoside copigmentation. 39th World Congress of Vine and Wine. 2016, 02033 https://doi.org/10.1051/bioconf/20213100011.
62. Hossain Md Z., Bahar Md M., Sarkar B., Donne S.W., Wade P., Bolan N. Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. Journal of Analytical and Applied Pyrolysis. Vol. 155, 2021, 105043 https://doi.org/10.1016/j.jaap.2021.105043.
63. Oni B.A., Oziegbe O., Olawole O.O. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences. Vol. 64, Issue 2, 2019, pages 222–236. https://doi.org/10.1016/j.aoas.2019.12.006.
64. Wang D., Jiang P., Zhang H., Yuan W., Biochar production and applications in agro and forestry systems: A review. Science of The Total Environment. Vol. 723, 2020, 137775. https://doi.org/10.1016/j.scitotenv.2020.137775.
65. Lijian L., Qin X., Lihong Y., Hui L., Yaoyu Z., Weijin Z., Shaojian J., Hailong L., Huajun H. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment. 2021, Vol. 763, 144204 https://doi.org/10.1016/j.scitotenv.2020.144204.
66. Lazzari E., Schena T., Primaz C.T., Maciel G.P.S., Machado M.E., Cardoso C.A.L., Jacques R.A., Caramão E.B. Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste. Sustainable energy and fuels. Vol. 83, 2016, pages 529–536. https://doi.org/10.1016/j.indcrop.2015.12.073.
67. Fardhyanti D.S., Triwibowo B., Istanto H., Anajib M.K., Larasati A., Oktaviani W. Liquid phase equilibrium of phenol extraction from bio-oil produced by biomass pyrolysis using thermodynamic models. Chinese Journal of Chemical Engineering. Vol. 27, Issue 2, 2019, pages 391-399, https://doi.org/10.1016/j.cjche.2018.08.011.
68. Cui Y., Wang W., Chang J. Study on the Product Characteristics of Pyrolysis Lignin with Calcium Salt Additives. Materials , Vol. 12, 2019, 1609. https://doi.org/10.3390/ma12101609.
69. Fardhyanti D.S., Imani N.A.C., Damayanti A., Mardhotillah S.N., Afifudin M., Mulyaningtyas A., Akhir A.E., Nuramalia W., Maulana P. The separation of phenolic compounds from bio-oil produced from pyrolysis of corncobs. AIP Conference Proceedings. Vol. 2243, 2020, 020005. https://doi.org/10.1063/5.0001078.
70. Moldoveanu S.C. Chapter 12 - Pyrolysis of Carboxylic Acids. 2019, pages 483–553. https://doi.org/10.1016/B978-0-444-64000-0.00012-3.
71. Shadangi K.P., Singh R.K. Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel. Vol. 97, 2012, pages 450-456. https://doi.org/10.1016/j.fuel.2012.02.058.
72. Monlau F., Sambusiti C., Antoniou N., Barakat A., Zabaniotou A. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy. Vol. 148, 2015, pages 32–38. http://dx.doi.org/10.1016/j.apenergy.2015.03.024.
73. Mlonka-Mędrala A., Evangelopoulos P., Sieradzka M., Zajemska M., Magdziarz A. Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations. Fuel. Vol. 296, 2021, 120611. https://doi.org/10.1016/j.fuel.2021.120611.
74. Shudo T., Nagano T., Kobayashi M. Combustion characteristics of waste pyrolysis gases in an internal combustion engine. International Journal of Automotive Technology. Vol. 4, Issue 1, 2003, pages 1–8.
75. Prabha C., Arunkumar S.P., Sharon H., Vijay R., Niyas A.M., Stanley P., Ratna K.S. Performance and combustion analysis of diesel engine fueled by blends of diesel + pyrolytic oil from Polyalthia longifolia seeds. AIP Conference Proceedings. 2020. https://doi.org/10.1063/5.0005575.
76. Hossain A.K., Davies P.A. Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review. Renewable and Sustainable Energy Reviews. Vol. 21, 2013, pages 165-189. https://doi.org/10.1016/j.rser.2012.12.031.
77. Shaomin L., Jinglin Z., Mingqiang C., Wenping X., Zhonglian Y., Lihong K. Effects of pyrolysis parameters on hydrogen formations from biomass: a review. International Journal of Hydrogen Energy. Vol. 39, Issue 25, 2014, pages 13128–13135. http://dx.doi.org/10.1016/j.ijhydene.2014.06.158.
78. Wang F., Wang P., Raheem A., Ji G., Memon M.Z., Song Y., Zhao M. Enhancing hydrogen production from biomass pyrolysis by dental-wastes-derived sodium zirconate. International Journal of Hydrogen Energy. Volume 44, Issue 43, 2019, pages 23846-23855. https://doi.org/10.1016/j.ijhydene.2019.07.095.
79. Karaeva YU.V. Proizvodstvo vodoroda pri tsentralizovannoi utilizatsii otkhodov agropromyshlennogo kompleksa. Al'ternativnaya ehnergetika i ehkologiya. 2020. https://doi.org/10.15518/isjaee.2020.09.003.
80. J.V. Karaeva, Hydrogen production at centralized utilization of agricultural waste, International Journal of Hydrogen Energy, 2021, https://doi.org/10.1016/j.ijhydene.2021.08.004.
81. Karaeva J.V., Kamalov R.F., Kadiyrov A.I. Production of biogas from poultry waste using the biomass of plants from Amaranthaceae family. IOP Conference Series: Earth and Environmental Science. Vol. 288, 2019, 012096. https://doi.org/10.1088/1755-1315/288/1/012096 .
82. Karaeva YU.V., Timofeeva S.S. Issledovanie protsessa anaehrobnogo sbrazhivaniya korov'ego navoza i rastitel'nykh otkhodov. Vestnik Ul'yanovskoi sel'skokhozyaistvennoi akademii. №4(48), 2019, str. 6-10. https://doi.org/10.18286/1816-4501-2019-4-6-10.
83. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N., Esposito G. A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Applied Energy. Vol. 144, 2015, pages 73-95. https://doi.org/10.1016/j.apenergy.2015.01.045.
84. Yokoyama H., Waki M., Ogino A., Ohmori H., Tanaka Y. Hydrogen fermentation properties of undiluted cow dung. Journal of bioscience and bioengineering. Vol. 104, 2007, pages 82-85. https://doi.org/10.1263/jbb.104.82.
85. Fan Y.T., Zhang Y.H., Zhang S.F., Hou H.W., Ren B.Z. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology. Vol. 97(3), 2006, pages 500-505. https://doi.org/10.1016/j.biortech.2005.02.049.
86. Liu S., Li W., Zheng G., Yang H., Li L. Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic SemiContinuous Process. Energies. Vol. 13(15), 2020, 3848. https://doi.org/10.3390/en13153848.
Review
For citations:
Karaeva J.V., Timofeeva S.S., Kovalev A.A., Kovalev D.A., Gilfanov M.F., Grigoriev V.S., Litti Yu.V. Co-pyrolysis of agricultural waste and estimation of pyrolysis applicability in the integrated technology of biorenewable hydrogen production. Alternative Energy and Ecology (ISJAEE). 2021;(25-27):124-146. (In Russ.) https://doi.org/10.15518/isjaee.2021.09.124-146