Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of confectionery wastewater pretreatment in a vortex layer apparatus on the biohydrogen production through continuous dark fermentation

https://doi.org/10.15518/isjaee.2022.01.077-092

Abstract

The biological hydrogen production from confectionary wastewater (CWW) was evaluated in a continuous mode in up-flow anaerobic biofilters. Wastewater was pretreated in the vortex layer apparatus (VLA) for 1 and 3 minutes at a power of VLA of 14 kW. HRT in biofilters was gradually decreased from 5.6 to 1.8 and 1.3 days, which corresponded to OLR 2.0; 6.3; 8.8 kg COD/(m3 day). Pretreatment in VLA led to a change in a number of physicochemical characteristics of CWW: a slight increase in soluble COD, an increase in the content of soluble sugars, acetic acid, and a decrease in the concentration of propionic, butyric, and caproic acids. It was shown that due to the abrasion of steel needles in the pretreated CWW, the concentration of iron increased. Despite the fact that the highest yield of hydrogen was observed for unpretreated CWW, the pretreatment in VLA contributed to a significant increase in the methane yield, possibly due to an increase in the iron content in the pretreated CWW. Thus, pretreatment in VLA can be a promising method for improving the process of obtaining biohythane from wastewater.

About the Authors

E. R. Mikheeva
Lobachevsky State University of Nizhni Novgorod
Russian Federation

Elza R Mikheeva  – Researcher, Laboratory of Resource-Saving Biotechnology, Candidate of Biological Sciences.

603950 Nizhnij Novgorod



I. V. Katraeva
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Inna V. Katraeva  – associate professor of the chair of water supply, sewage, engineering ecology and chemistry, candidate of technical sciences.

603950 Nizhnij Novgorod



A. A. Kovalev
Federal Government Budgetary Institution of Science "Federal scientific agroengeneering centre VIM"
Russian Federation

Andrey A. Kovalev  – senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences

109428 Moscow



D. A. Kovalev
Federal Government Budgetary Institution of Science "Federal scientific agroengeneering centre VIM"
Russian Federation

Dmitry A. Kovalev  – head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences

109428 Moscow



Yu. V. Litti
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Russian Federation

Yuriy V. Litti – Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences.

119071 Moscow



References

1. Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative Hydrogen Production from Wastewaters: A Review and Prognosis. International Journal of Hydrogen Energy 2012, 37 (20), 15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072.

2. Zhang, T.; Jiang, D.; Zhang, H.; Lee, D.-J.; Zhang, Z.; Zhang, Q.; Jing, Y.; Zhang, Y.; Xia, C. Effects of Different Pretreatment Methods on the Structural Characteristics, Enzymatic Saccharification and PhotoFermentative Bio-Hydrogen Production Performance of Corn Straw. Bioresource Technology 2020, 304, 122999. https://doi.org/10.1016/j.biortech.2020.122999.

3. Chong, M.-L.; Sabaratnam, V.; Shirai, Y.; Hassan, M. A. Biohydrogen Production from Biomass and Industrial Wastes by Dark Fermentation. International Journal of Hydrogen Energy 2009, 34 (8), 3277–3287. https://doi.org/10.1016/j.ijhydene.2009.02.010.

4. Park, J.-H.; Chandrasekhar, K.; Jeon, B.-H.; Jang, M.; Liu, Y.; Kim, S.-H. State-of-the-Art Technologies for Continuous High-Rate Biohydrogen Production. Bioresource Technology 2021, 320, 124304. https://doi.org/10.1016/j.biortech.2020.12 4304.

5. Elbeshbishy, E.; Dhar, B. R.; Nakhla, G.; Lee, H.-S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation. Renewable and Sustainable Energy Reviews 2017, 79, 656–668. https://doi.org/10.1016/j.rser.2017.05.075.

6. Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen Gas Production from Distillery Wastewater by Dark Fermentation. International Journal of Hydrogen Energy 2013, 38 (19), 7767–7773. https://doi.org/10.1016/j.ijhydene.2013.04.008.

7. Nunes Ferraz Júnior, A. D.; Etchebehere, C.; Zaiat, M. Mesophilic Hydrogen Production in Acidogenic Packed-Bed Reactors (APBR) Using Raw Sugarcane Vinasse as Substrate: Influence of Support Materials. Anaerobe 2015, 34, 94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008.

8. Litti YU.V., Potekhina M.A., Zhuravleva E.A., Vishnyakova A.V., Grouzdev D.S., Kovalev A.A., Kovalev D.A., Katraeva I.V., Parshina S.N. Biohydrogen production from simple sugars and real wastewater by a new stain of thermophilic anaerobic bacterium thermosanaerobacterium themosaccharolyticum SP-H2. Alternative Energy and Ecology (ISJAEE), 2021 ;( 0103):359-361 (in Russian) https://doi.org/10.15518/isjaee.2021.10.003.

9. Kuang, Y.; Zhao, J.; Gao, Y.; Lu, C.; Luo, S.; Sun, Y.; Zhang, D. Enhanced Hydrogen Production from Food Waste Dark Fermentation by Potassium Ferrate Pretreatment. Environmental Science and Pollution Research 2020, 27. https://doi.org/10.1007/s11356-02008207-3.

10. Yun, Y.-M.; Lee, M.-K.; Im, S.-W.; Marone, A.; Trably, E.; Shin, S.-R.; Kim, M.-G.; Cho, S.-K.; Kim, D.-H. Biohydrogen Production from Food Waste: Current Status, Limitations, and Future Perspectives. Bioresource Technology 2018, 248, 79–87. https://doi.org/10.1016/j.biortech.2017.06.107.

11. Soares, J. F.; Confortin, T. C.; Todero, I.; Mayer, F. D.; Mazutti, M. A. Dark Fermentative Biohydrogen Production from Lignocellulosic Biomass: Technological Challenges and Future Prospects. Renewable and Sustainable Energy Reviews 2020, 117, 109484. https://doi.org/10.1016/j.rser.2019.109484

12. Rajesh Banu, J.; Merrylin, J.; Mohamed Usman, T. M.; Yukesh Kannah, R.; Gunasekaran, M.; Kim, S.H.; Kumar, G. Impact of Pretreatment on Food Waste for Biohydrogen Production: A Review. International Journal of Hydrogen Energy 2020, 45 (36), 18211–18225. https://doi.org/10.1016/j.ijhydene.2019.09.176.

13. Karim, A.; Islam, M. A.; Mishra, P.; Yousuf, A.; Faizal, C. K. M.; Khan, M. M. R. Technical Difficulties of Mixed Culture Driven Waste Biomass-Based Biohydrogen Production: Sustainability of Current Pretreatment Techniques and Future Prospective. Renewable and Sustainable Energy Reviews 2021, 151, 111519. https://doi.org/https://doi.org/10.1016/j.rser.2021.111519

14. Voitovich V.A., Shvarev R.R., Zakharychev E.A., Feoktistova E.P., Deberdeev R.Y., Zakharycheva N.S. The efficiency of the vortex layer plants using when powder-like materials grinding. NOVYE OGNEUPORY (NEW RE-FRACTORIES) 2017;(10):48-53. (In Russ.) https://doi.org/10.17073/1683-4518-2017-10-48-53.

15. Litti, Y., Katraeva, I., Kovalev, D., & Mikheeva, E. Effect of the sewage sludge treatment in vortex layer apparatus on the viability of microorganisms and protozoa. Procedia Environmental Science, Engineering and Management. 2019;6(3):413-421.

16. Kovalev, A.; Kovalev, D.; Grigoriev, V.; Litti, Y. The Vortex Layer Apparatus as a Source of Low-Grade Heat in the Process of Pretreatment of the Substrate before Anaerobic Digestion. IOP Conference Series: Earth and Environmental Science 2021, 938, 12004. https://doi.org/10.1088/1755-1315/938/1/012004.

17. Mikheeva, E.; Katraeva, I.; Vorozhtsov, D.; Litti, Y.; Nozhevnikova, A. Efficiency of Two-Phase Anaerobic Fermentation and the Physicochemical Properties of the Organic Fraction of Municipal Solid Waste Processed in a Vortex-Layer Apparatus. Applied Biochemistry and Microbiology 2020, 56, 736–742. https://doi.org/10.1134/S0003683820060113.

18. Litti, Y.; Kovalev, D.; Kovalev, A.; Katraeva, I.; Russkova, Y.; Nozhevnikova, A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill. In Journal of Physics: Conference Series; 2018; Vol. 1111. https://doi.org/10.1088/1742-6596/1111/1/012013.

19. Nozhevnikova, A. N.; Russkova, Y. I.; Litti, Y. V; Parshina, S. N.; Zhuravleva, E. A.; Nikitina, A. A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities. Microbiology 2020, 89 (2), 129–147. https://doi.org/10.1134/S0026261720020101.

20. Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020, 23, 101794. https://doi.org/10.1016/j.isci.2020.101794.

21. Srivastava, N.; Srivastava, M.; Malhotra, B. D.; Gupta, V. K.; Ramteke, P. W.; Silva, R. N.; Shukla, P.; Dubey, K. K.; Mishra, P. K. Nanoengineered Cellulosic Biohydrogen Production via Dark Fermentation: A Novel Approach. Biotechnology advances 2019, 37 (6),107384. https://doi.org/10.1016/j.biotechadv.2019.04.006.

22. Kumar, G.; Mathimani, T.; Rene, E. R.; Pugazhendhi, A. Application of Nanotechnology in Dark Fermentation for Enhanced Biohydrogen Production Using Inorganic Nanoparticles. International Journal of Hydrogen Energy 2019, 44 (26), 13106–13113. https://doi.org/10.1016/j.ijhydene.2019.03.131.

23. Shanmugam, S.; Hari, A.; Pandey, A.; Mathimani, T.; Felix, L.; Pugazhendhi, A. Comprehensive Review on the Application of Inorganic and Organic Nanoparticles for Enhancing Biohydrogen Production. Fuel 2020, 270, 117453. https://doi.org/10.1016/j.fuel.2020.117453.

24. Wang, J.; Yin, Y. Principle and Application of Different Pretreatment Methods for Enriching Hydrogen-Producing Bacteria from Mixed Cultures. International Journal of Hydrogen Energy 2017, 42 (8), 4804– 4823. https://doi.org/10.1016/j.ijhydene.201 7.01.135.

25. Mikheeva, E. R.; Katraeva, I. V; Kovalev, A. A.; Kovalev, D. A.; Nozhevnikova, A. N.; Panchenko, V.; Fiore, U.; Litti, Y. V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Applied Sciences 2021, 11 (2). https://doi.org/10.3390/app11020510.

26. Guruchandran, S.; Muninathan, C.; Bakshi, A.; Ganesan, N. Improving Process Stability, Biogas Production and Energy Recovery Using Two-Stage Mesophilic Anaerobic Codigestion of Rice Wastewater with Cow Dung Slurry. Biomass and Bioenergy 2021, 152, 106184. https://doi.org/10.1016/j.biombioe.2021.106184.

27. Liu, X.; Wang, J.; Duan, L.; Song, Y.; Hu, X.; Wei, J. Enhancing the Production of Butyric Acid from Sludge Fermentation with an Emphasis on Zinc, Cobalt, Cuprum, Ferrum and Manganese. Environmental Earth Sciences 2015, 73 (9), 5057–5066. https://doi.org/10.1007/s12665-015-4289-7.

28. Ivetić, D. Ž.; Omorjan, R. P.; Đorđević, T. R.; Antov, M. G. The Impact of Ultrasound Pretreatment on the Enzymatic Hydrolysis of Cellulose from Sugar Beet Shreds: Modeling of the Experimental Results. Environmental Progress & Sustainable Energy 2017, 36 (4), 1164–1172. https://doi.org/10.1002/ep.12544.

29. Kumar, G.; Sen, B.; Lin, C.-Y. Pretreatment and Hydrolysis Methods for Recovery of Fermentable Sugars from De-Oiled Jatropha Waste. Bioresource technology 2013, 145. https://doi.org/10.1016/j.biortech.2013.02.080.

30. Zhao, C.; Sharma, A.; Ma, Q.; Zhu, Y.; Li, D.; Liu, Z.; Yang, Y. A Developed Hybrid Fixed-Bed Bioreactor with Fe-Modified Zeolite to Enhance and Sustain Biohydrogen Production. Science of The Total Environment 2021, 758, 143658. https://doi.org/10.1016/j.scitotenv.2020.143658.

31. Lee, Y. J.; Miyahara, T.; Noike, T. Effect of Iron Concentration on Hydrogen Fermentation. Bioresource Technology 2001, 80 (3), 227–231. https://doi.org/10.1016/S09608524(01)00067-0.

32. Chu, C.-Y.; Liu, P.-Y.; Lai, P.-J.; Chun-Te Lin, J.; Sinsuw, A. A. E. An Approach of Auxiliary Carbohydrate Source on Stabilized Biohythane Production and Energy Recovery by Two-Stage Anaerobic Process from Swine Manure. International Journal of Hydrogen Energy 2021. https://doi.org/10.1016/j.ijhydene.2021.10.078.

33. Abdur Rawoof, S. A.; Kumar, P. S.; Vo, D.-V. N.; Devaraj, T.; Subramanian, S. Biohythane as a High Potential Fuel from Anaerobic Digestion of Organic Waste: A Review. Renewable and Sustainable Energy Reviews 2021, 152, 111700. https://doi.org/10.1016/j.rser.2021.111700

34. Bélaich, J. P., Bruschi, M., & Garcia, J. L. (Eds.). Microbiology and biochemistry of strict anaer-obes involved in interspecies hydrogen transfer (Vol. 54). 2012 Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-0613-9.

35. Ferry, J. G. Methanogenesis: ecology, physiology, biochemistry & genetics. 2012 Springer Science & Business Media. https://doi.org/10.1007/978-1-46152391-8.

36. Valdez-Vazquez, I.; Poggi-Varaldo, H. M. Hydrogen Production by Fermentative Consortia. Renewable and Sustainable Energy Reviews 2009, 13 (5), 1000–1013. https://doi.org/10.1016/j.rser.2008.03.003.

37. Monnet, F.An Introduction to Anaerobic Digestion of Organic Wastes. A Report by Remade Scotland, 2003.

38. Mamimin, C.; Prasertsan, P.; Kongjan, P.; OThong, S. Effects of Volatile Fatty Acids in Biohydrogen Effluent on Biohythane Production from Palm Oil Mill Effluent under Thermophilic Condition. Electronic Journal of Biotechnology 2017, 29, 78–85. https://doi.org/10.1016/j.ejbt.2017.07.006.

39. Nualsri, C.; Kongjan, P.; Reungsang, A. Direct Integration of CSTR-UASB Reactors for Two-Stage Hydrogen and Methane Production from Sugarcane Syrup. International Journal of Hydrogen Energy 2016, 41 (40), 17884–17895. https://doi.org/10.1016/j.ijhydene.201 6.07.135.


Review

For citations:


Mikheeva E.R., Katraeva I.V., Kovalev A.A., Kovalev D.A., Litti Yu.V. Effect of confectionery wastewater pretreatment in a vortex layer apparatus on the biohydrogen production through continuous dark fermentation. Alternative Energy and Ecology (ISJAEE). 2022;(1):77-92. (In Russ.) https://doi.org/10.15518/isjaee.2022.01.077-092

Views: 590


ISSN 1608-8298 (Print)