Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

A CATALYST SUPPORTER TO LOWER THE CARBON MONOXIDE CONTENT IN ETHANOL REFORMING

https://doi.org/10.15518/isjaee.2015.21.029

Abstract

Catalytic water-vapor reforming of ethanol on nickel catalysts on various support (zinc and silicon oxides and molecular sieves) was performed in the temperature range 250-400 °C in order to determine a product with a minimum carbon monoxide content. At low temperature these catalysts showed a fairly high efficiency in ethanol conversion, giving a mixture with high hydrogen content suitable to supply fuel cells. The major conversion products were hydrogen, methane, carbon monoxide and dioxide. The minimum carbon monoxide content in the products was observedat 400 °C reforming with the catalyst on zinc oxide support and with molecular sieves. The 400 °C reforming with the catalyst on silicon oxide support gave products with carbon monoxide concentration of 11 vol.%.

About the Authors

N. V. Lapin
Institute of Microelectronics Technology and High Purity Materials RAS (IMT RAS) 6 Acad. Osipyan str., Chernogolovka, Moscow reg., 142432, Russia
Russian Federation

PhD, major scientific associate, IMT RAS



V. S. Bezhok
Institute of Microelectronics Technology and High Purity Materials RAS (IMT RAS) 6 Acad. Osipyan str., Chernogolovka, Moscow reg., 142432, Russia
Russian Federation

PhD, scientific associate, IMT RAS



V. V. Grinko
Institute of Microelectronics Technology and High Purity Materials RAS (IMT RAS) 6 Acad. Osipyan str., Chernogolovka, Moscow reg., 142432, Russia
Russian Federation

scientific associate, IMT RAS



A. F. Vyatkin
Institute of Microelectronics Technology and High Purity Materials RAS (IMT RAS) 6 Acad. Osipyan str., Chernogolovka, Moscow reg., 142432, Russia
Russian Federation

Doctor of Science, professor, deputy director of IMT RAS



References

1. Morgenstern D.A., Fornango J.P. Low-temperature reforming of ethanol over copper-plated raney nickel: a new route to sustainable hydrogen for transportation // Energy & Fuels. 2005. Vol. 19, No. 4. P. 1708-1716.

2. Haryanto A., Fernando S., Murali N., Adhikari S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review // Energy & Fuels. 2005. Vol. 19, No. 5. P. 2098-2106.

3. Lovón A.S.P., Lovón-Quintana J.J., Almerindo G.I., Valença G.P., Bernardi M.I.B., Araújo V.D., Rodrigues T.S., Robles-Dutenhefner P.A., Fajardo H.V. Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production // J. of Power Sources. 2012. Vol. 216. P. 281-289.

4. Chica A., Sayas S. Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite // Catalysis Today. 2009. Vol. 146, No. 1-2. P. 37-43.

5. Ciambelli P., Palma V., Ruggiero A. Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts // Appl. Catalysis B: Environmental. 2010. Vol. 96, No. 1-2. P. 18-27.

6. Ciambelli P., Palma V., Ruggiero A. Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts // Appl. Catalysis B: Environmental. 2010. Vol. 96, No. 1-2. P. 190-197.

7. Aboudheir A., Akande A., Idem R., Dalai A. Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst // Int. J. Hydrogen Energy. 2006. Vol. 31, No. 6. P. 752-761.

8. Llorca J., Homs N., Sales J., Piscina P. Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming // J. Catalysis. 2002. Vol. 209, No. 2. P. 306-317.

9. Galvita V.V., Semin G.L., Belyaev V.D., Semikolenov V.A., Tsiakaras P., Sobyanin V.A. Synthesis gas production by steam reforming of ethanol // Appl. Catalysis A: General. 2001. Vol. 220, No. 1-2. P. 123-127.

10. Klouz V., Fierro V., Denton P., Katz H., Lisse J.P., Bouvot-Maudiut S., Mirodatos C. Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization // J. of Power Sources. 2002. Vol. 105, No. 1. P. 26-34.

11. Kugai J., Velu S., Song C. Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production // J. Catalysis Letters. 2005. Vol. 101, No. 3-4. P. 255-264.

12. Garcia E., Laborde M. Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis // Int. J. Hydrogen Energy. 1991. Vol.16, No. 5. P. 307-312.

13. Vasudeva K., Mitra N., Umasankar P., Dhingra S.C. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis // Int. J. Hydrogen Energy. 1996. Vol. 21, No. 1. P. 13-18.

14. Freni S., Maggio G., CavallaroS. Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach // J. of Power Sources. 1996. Vol. 62, No. 1. P. 67-73.

15. Ioannides T. Thermodynamic analysis of ethanol processors for fuel cell applications // J. of Power Sources. 2001. Vol. 92, No. 1-2. P. 17-25.

16. Лапин Н.В., Редькин А.Н., Бежок В.С., Вяткин А.Ф. Получение водорода каталитическим пиролизом этанола на никелевом катализаторе // Журнал физической химии. 2009. Т. 83, № 10. С. 1-5. / Lapin N.V., Red'kin А.N., Bežok V.S., Vâtkin А.F. Polučenie vodoroda katalitičeskim pirolizom ètanola na nikelevom katalizatore // Žurnal fizičeskoj himii. 2009. T. 83, № 10. S. 1-5.

17. Лапин Н.В., Бежок В.С. Низкотемпературный реформинг этанола на никель-медном катализаторе // Журнал прикладной химии. 2011. Т. 84, № 6. С. 983-987. / Lapin N.V., Bežok V.S. Nizkotemperaturnyj reforming ètanola na nikel'-mednom katalizatore // Žurnal prikladnoj himii. 2011. T. 84, № 6. S. 983-987.

18. Лапин Н.В., Бежок В.С., Вяткин А.Ф. Получение водорода для питания топливных элементов низкотемпературной конверсией этанола на катализаторах Ni/ZnO и Ni-Cu/ZnO // Журнал прикладной химии. 2014. Т. 87, № 5. С. 619-623. / Lapin N.V., Bežok V.S., Vâtkin А.F. Polučenie vodoroda dlâ pitaniâ toplivnyh èlementov nizkotemperaturnoj konversiej ètanola na katalizatorah Ni/ZnO i Ni-Cu/ZnO // Žurnal prikladnoj himii. 2014. T. 87, № 5. S. 619-623.

19. Da Costa-Serra J.F., Guil-Lopez R., Chica A. Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases // Int. J. Hydrogen Energy. 2010. Vol. 35, No. 13. P. 6709-6716.

20. Homs N., Llorca J., Piscina P. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts // Catalysis Today. 2006. Vol. 116, No. 3. P. 361-366.

21. Garcia V.M., Lopez E., Serra M., Llorca J. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application // J. of Power Sources. 2009. Vol. 192, No. 1. P. 208-215.

22. Casanovas A., Leitenburg C., Trovarelli A., Llorca J. Ethanol steam reforming and water gas shift reaction over Co– Mn/ZnO catalysts // Chem. Eng. J. 2009. Vol. 154, No. 1-3. P. 267-273.

23. Casanovas A., Roig M., Leitenburg C., Trovarelli A., Llorca J. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na // Int. J. of Hydrogen Energy. 2010. Vol. 35, No. 15. P. 7690-7698.


Review

For citations:


Lapin N.V., Bezhok V.S., Grinko V.V., Vyatkin A.F. A CATALYST SUPPORTER TO LOWER THE CARBON MONOXIDE CONTENT IN ETHANOL REFORMING. Alternative Energy and Ecology (ISJAEE). 2015;(21):216-221. (In Russ.) https://doi.org/10.15518/isjaee.2015.21.029

Views: 581


ISSN 1608-8298 (Print)