Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Prospects of hydrogen production by the method of MSW gasification at existing CHP plants

https://doi.org/10.15518/isjaee.2023.06.126-142

Abstract

The work is devoted to the development of a thermal scheme for the conversion of a cogeneration power plant to threegeneration with the production of hydrogen as a new product.

The purpose of the work is to assess the possibility and potential of hydrogen production from MSW at the existing thermal power plants of St. Petersburg.

To achieve this goal, it is necessary to develop a methodology for selecting the site of an existing thermal power plant in order to integrate a hydrogen production complex by the MSW gasification method, as well as a methodology for estimating the amount of hydrogen that can potentially be obtained from a given amount of MSW. The research methods include simulation of the thermal circuit of a steam power plant in the United Cycle program.

The paper proposes an algorithm for selecting the site of an operating thermal power plant for the integration of a complex for the production of hydrogen by the method of MSW gasification. The algorithm can be applied to any subjects of the Russian Federation, and its relevance is confirmed by strategic documents. Potential locations for the new CHP are being considered in the territories of CHP-21 and CHP-22, which have the necessary resources and good infrastructure. Because of the study, the site of CHP-22 was selected as the most suitable for the placement of new facilities.

A new thermal scheme of a threegeneration power plant has been developed, including a hydrogen generation unit by the MSW gasification method. This allows the production of hydrogen in parallel with the production of electricity and heat. The efficiency evaluation criterion is the fuel and heat utilization coefficient (FHUC). Regardless of the hydrogen content in the generated synthesis gas, the integration of the synthesis gas cooler into the thermal circuit of the CHP leads to an increase in the FHUC and an additional energy effect. This scheme increases the efficiency of existing CHP plants, regardless of the morphological composition of municipal solid waste.

About the Authors

D. L. Kolbantseva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Kolbantseva Daria L. - assistant of the Higher School of Nuclear and Heat Power Engineering (postgraduate student)



D. A. Treshchev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Treshchev Dmitriy A. - senior lecturer of the Higher School of Nuclear and Heat Power Engineering (postgraduate student)



K. S. Kalmykov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Kalmykov Konstantin S. - assistant of the Higher School of Nuclear and Heat Power Engineering (postgraduate student).



I. D. Anikina
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Anikina Irina D. - assistant professor of the Higher School of Nuclear and Heat Power Engineering



M. A. Treshcheva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Treshcheva Milana A. - associate professor of the Higher School of Nuclear and Heat Power Engineering



A. A. Kalyutik
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Kalyutik Aleksandr A. - Director of the Higher School of Nuclear and Thermal Energy



I. A. Vladimirov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Vladimirov Iaroslav V. - Associate professor of the Higher School of Nuclear and Heat Power Engineering



K. A. Naypak
Peter the Great St. Petersburg Polytechnic University
Russian Federation


References

1. Direktiva Soveta Evropeiskogo Soobshche-stva № 75/442/EEHS ot 15 iyulya 1975 g. «Ob otkhodaKH» [Ehlektronnyi resurs] URL: https://www.dokipedia.ru/document/5180846 (data obrashcheniya 01.05.2023).

2. Strategiya razvitiya promyshlennosti po obrabotke, utilizatsii i obezvrezhivaniyu otkhodov proizvodstva i potrebleniya na period do 2030 goda (Rasporyazhenie Pravitel'stva RF № 84-r ot 25 yanvarya 2018 g.).

3. Ehnergeticheskaya strategiya Rossii na period do 2030 goda (Rasporyazhenie Pravitel'stva RF № 1715- r ot 13 noyabrya 2009 g.).

4. Osnovy gosudarstvennoi politiki v obla-sti ehkologicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 goda (Rasporyazhenie Pravitel'-stva RF №2423-r ot 18 dekabrya 2012 g.).

5. Strategii ehkologicheskoi bezopasnosti Rossiiskoi Federatsii na period do 2025 goda (Ukaz Prezidenta RF № 176 ot 19 aprelya 2017 g.).

6. Yulkin M.A. Global'naya dekarbonizatsiya i ee vliyanie na ehkonomiku Rossii. ANO «Tsentr ehkologicheskikh investitsiI». - 2019. - 23 s. [Ehlektronnyi resurs] URL:http://downloads.igce.ru/news/Yulkin_M_A_ext_abstract_IGCE_06022019.pdf (data obrashcheniya 05.05.2023).

7. Ukaz Prezidenta RF ot 13.05.2017 g. № 208 ob utverzhdenii strategii ehkonomicheskoi bezopas-nosti RF na period do 2030 goda [Ehlektronnyi re-surs] URL: http://www.kremlin.ru/acts/bank/41921 (data obrashcheniya: 06.05.2023).

8. Rasporyazhenie Pravitel'stva RF ot 9 iyunya 2020 g. № 1523-r Ob utverzhdenii Ehnergeticheskoi strategii Rossiiskoi Federatsii na period do 2035 goda [Ehlektronnyi resurs] URL: https://docs.cntd.ru/document/565068231 (data obrashcheniya: 05.05.2023).

9. Ukaz Prezidenta RF ot 19 aprelya 2017 g. № 176 “O Strategii ehkologicheskoi bezopasnosti Rossiiskoi Federatsii na period do 2025 godA” [Ehlektronnyi resurs] URL: http://government.ru/docs/all/111285/ (data obrashcheniya: 06.05.2023).

10. Rasporyazhenie Pravitel'stva RF ot 5 avgu-sta 2021 g. № 2162-r Ob utverzhdenii Kontseptsii razvitiya vodorodnoi ehnergetiki v RF [Ehlektronnyi resurs] URL: http://government.ru/docs/42971/ (data obrashcheniya: 06.05.2023).

11. Kolbantseva, D. L. Perspektivy proizvod-stva vodoroda iz otkhodov na deistvuyushchikh TEHTS G. Sankt-Peterburga / D. L. Kolbantseva, D. A. Treshchev, M. A. Treshcheva // Sovremennye tekhnologii i ehkonomika v ehnergetike: Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Sankt-Peterburg, 27 aprelya 2022 goda. – Sankt-Peterburg: POLITEKHPRESS, 2022. – S. 118-120. – EDN PLRGKB.

12. Analysis of Technologies for Hydrogen Consumption, Transition and Storage at Operating Thermal Power Plants / D. Kolbantseva, D. Treschev, M. Tresche-va [et al.] // Energies. – 2022. – Vol. 15, No. 10. – DOI 10.3390/en15103671. – EDN DDRHPN.

13. Vlasov, O. A. Analiz raboty pechei szhiganiya otkhodov / O. A. Vlasov, V. V. Mechev // Tverdye bytovye otkhody. – 2017. – № 8(134). – S. 40-43. – EDN ZMRDDT.

14. Ershov, A. G. Termicheskoe obezvrezhivanie otkhodov: teoriya i praktika, mify i legendy / A. G. Ershov, V. L. Shubnikov // Tverdye bytovye otkhody. – 2014. – № 5(95). – S. 46-53. – EDN SCPFUT.

15. Opyt gazifikatsii tverdogo topliva iz TKO i biomassy // Tverdye bytovye otkhody. – 2017. – № 8(134). – S. 51-53. – EDN ZMRDEX.

16. [16]. Abolin, A. A. RDF-toplivo - konechnyi produkt pererabotki TBO / A. A. Abolin // Tverdye bytovye otkhody. – 2013. – № 7(85). – S. 28-29. – EDN QJETNN.

17. Meshcheryakov, G. V. Konversiya prirodnogo ga-za dlya sovmestnykh proizvodstv metanol-vodorod, metanol-ammiak / G. V. Meshcheryakov, YU. A. Komissa-rov // Vestnik MITKHT im. M.V. Lomonosova. – 2011. – T. 6, № 4. – S. 72-76.

18. Prikaz Minehnergo Rossii ot 22.08.2013 № 469 «Ob utverzhdenii poryadka sozdaniya i ispol'zo-vaniya teplovymi ehlektrostantsiyami zapasov topli-va, v tom chisle v otopitel'nyi perioD» [Ehlektron-nyi resurs] URL:http://pravo.gov.ru/proxy/ips/?doc_itself=&backlink=1&nd=602167469&page=1&rdk=0 (data obrashcheniya: 06.05.2023).

19. SaNPIN 2.2.1/2.1.1.1200-03 "Sanitarnozashchitnye zony i sanitarnaya klassifikatsiya predpriyatii, sooruzhenii i inykh ob"ektov".

20. Kalyutik A.A., Treshchev D.A., Pozdeeva D.L. Utilizatsiya tverdykh bytovykh otkhodov na TEHTS g. Sankt-Peterburga // Nauchno-tekhnicheskie vedomosti SPBPU. Estestvennye i inzhenernye nauki. 2019. T. 25, № 3. S. 59–70. DOI: 10.18721/JEST.25304.

21. Patent № 2588223 C2 Rossiiskaya Federa-tsiya, MPK C10K 1/06. Sposob okhlazhdeniya i promyv-ki sintez-gaza iz biomassy i sistema, prednazna-chennaya dlya realizatsii dannogo sposoba: № 2014131241/05: zayavl. 26.10.2012: opubl. 27.06.2016 / YA. Chzhan, V. Lyu, M. Sya, L. Chzhan; zayavitel' UKHAN' KAIDI INDZHINIRING TEKNOLODZHI RISERCH INSTIT'YUT KO., LTD.. – EDN DQBBPB.

22. Amosova O.L., Malykh O.V., Teplyakov V.V. Membranno-adsorbtsionnye metody vydeleniya vodoroda iz mnogokomponentnykh gazovykh smesei biotekhnologii i neftekhimii // Membrany. –2008. –№ 2. –S. 26-39.

23. Romanov, S.N. Software “United Cycle” for Simulation of Static Operation Modes of Power Plants. In Proceedings of the International Society for Optical Engineering, St. Petersburg, Russia, 12–17 June 2001; pp. 306–309. – DOI: 10.1117/12.456288.

24. Romanov, S. “United Cycle” Software for Simulation of Flow Sheets of Power Plants. / S. Romanov [et al.] // In Proceeding of the “16th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems (ECOS- 2003)”, Copenhagen, Denmark, 30 June–2 July 2003; pp. 1691–1696.

25. Rasporyazhenie Komiteta po prirodopol'zovaniyu, okhrane okruzhayushchei sredy i obespecheniyu ehkologicheskoi bezopasnosti ot 15.06.2022 № 361-r "Ob utverzhdenii Territorial'noi skhemy obrashche-niya s otkhodami proizvodstva i potrebleniya".


Review

For citations:


Kolbantseva D.L., Treshchev D.A., Kalmykov K.S., Anikina I.D., Treshcheva M.A., Kalyutik A.A., Vladimirov I.A., Naypak K.A. Prospects of hydrogen production by the method of MSW gasification at existing CHP plants. Alternative Energy and Ecology (ISJAEE). 2023;(6):126-142. (In Russ.) https://doi.org/10.15518/isjaee.2023.06.126-142

Views: 263


ISSN 1608-8298 (Print)