

Gas composition in the near-electrode areas of bioelectrochemical systems based on the electrogenic properties of the tomato root environment
https://doi.org/10.15518/isjaee.2023.10.064-079
Abstract
The work is devoted to a comprehensive study of the plant bioelectrochemical systems (BES) properties, including both electrogenic characteristics and monitoring of gas composition changes in the near-electrode areas, as well as photosynthetic, biochemical and morphological parameters of the resulting plant products. Tomatoes and three different growing systems were selected as a test object - using panoponics technology, peat substrate and sodpodzolic sandy loam soil. The BES voltage using a nutrient solution was 35-180 mV, peat – 160-430 mV, soil – 160- 590 mV, depending on the stage of plant development. The carbon dioxide content in the near-electrode areas of the BES was increased on average by more than 5 times. An increase in the amount of hydrogen content by 40% compared to air in peat-based BES was discovered. The presence of compounds with m/z=56 and m/z=64 in the gas component of the near-electrode areas has been identified. It was shown that tomatoes grown in BES with soil had better photosynthetic characteristics and higher yields. Prospects for the use of BES lie in the field of renewable energy, autonomous automated agricultural production and smart agriculture.
About the Authors
T. E. KuleshovaAgrophysical Research Institute
Russian Federation
Kuleshova Tatiana Eduardovna, Candidate of Physical and Mathematical Sciences, Researcher,
14, Grazhdansky prospekt, St. Petersburg, 195220.
E. M. Ezerina
Russian Federation
Ezerina Elizaveta Mikhailovna, Graduate Student, Engineer,
14, Grazhdansky prospekt, St. Petersburg, 195220.
V. E. Vertebny
Russian Federation
Vertebny Vitaly Evgenievich, Senior Researcher,
14, Grazhdansky prospekt, St. Petersburg, 195220.
Yu. V. Khomyakov
Russian Federation
Khomyakov Yuri Viktorovich, Candidate of Biological Sciences, Leading Researcher,
14, Grazhdansky prospekt, St. Petersburg, 195220.
References
1. . Logan B. Microbial fuel cells / B. Logan.: John Wiley & Sons, 2008. – 199 p.
2. . McCormick A.J. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems / A.J. McCormick [et al] // Energy & Environmental Science. – 2015 – V. 8. – №. 4. – P. 1092-1109. DOI: 10.1039/C4EE03875D.
3. . Strik D.P. Electricity production with living plants and bacteria in a fuel cell / D.P. Strik [et al] // International Journal of Energy Research. – 2008 – V. 32. – №. 9. – P. 870-876. DOI: 10.1002/er.1397.
4. . Chen B.Y. Reduction of carbon dioxide emission by using microbial fuel cells during wastewater treatment / B.Y. Chen [et al] //Aerosol and Air Quality Research. – 2013 – Т. 13. – №. 1. – P. 266-274. DOI: 10.4209/aaqr.2012.05.0122.
5. . Zaybak Z. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems / Z. Zaybak [et al] //Journal of biotechnology. – 2013. – Т. 168. – №. 4. – С. 478-485. DOI: 10.1016/j.jbiotec.2013.10.001.
6. . Wang X. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs) / X. Wang [et al] //Biosensors and Bioelectronics. – 2010. – Т. 25. – №. 12. – P. 2639-2643. DOI: 10.1016/j.jbiotec.2013.10.001.
7. . Cheng S. Direct biological conversion of electrical current into methane by electromethanogenesis / S. Cheng [et al] /Environmental science & technology. – 2009. – Т. 43. – №. 10. – P. 3953-3958. DOI: 10.1021/es803531g.
8. . Ceballos-Escalera A. Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach / A. Ceballos-Escalera [et al] //Applied energy. – 2020. – V. 260. – P. 114-138. DOI: 10.1016/j.apenergy.2019.114138.
9. . Oh S.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies / S.E. Oh, B.E. Logan //Water research. – 2005. – Т. 39. – №. 19. – С. 4673-4682. DOI: 10.1016/j.watres.2005.09.019.
10. . Rozendal R.A. Principle and perspectives of hydrogen production through biocatalyzed electrolysis / Rozendal R.A. [et al] // International Journal of Hydrogen Energy. – 2006. –V. 31. – № 12. – P. 1632-1640. DOI: 10.1016/j.ijhydene.2005.12.006.
11. . Rozendal R.A. Efficient hydrogen peroxide generation fromorganic matter in a bioelectrochemical system / Rozendal R.A. [et al] // Electrochemistry Communications. – 2009 – V. 11. – № 9. – P. 1752–1755. DOI: 10.1016/j.elecom.2009.07.008.
12. . Nevin K.P. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds/ K.P. Nevin [et al] // mBio – 2010 – V. 1. – № 2. DOI: 10.1128/mbio.00103-10 .
13. . Steinbusch K.J.J. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures / K.J.J. Steinbusch [et al]// Environmental Science and Technology, – 2010. – V. 44. – № 1 – P. 513–517, DOI: 10.1021/es902371e.
14. . Kuntke P. Ammonium recovery and energy production from urine by a microbial fuel cell / P. Kuntke // Water Research – 2012. – V. 46 – № 8 – P. 2627–2636. DOI: 10.1016/j.watres.2012.02.025.
15. . Choi O. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor / O. Choi, Y. Um, B.-I. Sang // Biotechnology and Bioengineering. – 2012. – V. 109. – № 10. – P. 2494–2502. DOI: 10.1002/bit.24520.
16. . van Eerten-Jansen M.C. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures / M.C. van Eerten-Jansen [et al] // Sustainable Chemistry and Engineering – 2013. – V. 1 – № 5. – P. 513–518. DOI: 10.1021/sc300168z.
17. . Saravanan A. Microbial electrolysis cells and microbial fuel cells for biohydrogen production: Current advances and emerging challenges / A. Saravanan [et al] //Biomass Conversion and Biorefinery. – 2020. – Т. 1. – №. 5. – С. 513-518. DOI: 1-21.10.1021/sc300168z.
18. . Gupta P. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis / P. Gupta [et al] // Indian journal of experimental Biology. – 2013. – V. 51. tion / M.T. Noori, B. Min // Bioresource Technology. – 2022. DOI: 10.1016/j.biortech.2022.127641.
19. . Luo S. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells / S. Luo [et al] // Water Res. – 2021. – V. 201. DOI: 10.1016/j.watres.2021.117326.
20. . Aelterman P. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells / P. Aelterman [et al] // Environ. Sci. Technol. – 2006. – Т. 40. – №. 10. – P. 3388-3394. DOI: 10.1021/es0525511.
21. . Panova G.G. Fundamentals of physical modeling of “ideal” agroecosystems / Panova G.G. [et al] // Tech. Phys. – 2020. – V. 65. – P. 1563-1569. DOI: 10.1134/S1063784220100163.
22. . Panova G.G. Scientific and technical bases of year-round obtaining high yields of high-quality plant products under artificial lighting / G.G. Panova // Reports of the Russian Academy of Agricultural Sciences. – 2015 – № 4. – P. 17-21.
23. . Boitsova L.V. Biological properties, general and labile organic matter of sod-podzolic sandy loam soil when using a mineral fertilizer system / L.V. Boitsova // Agrophysics. – 2014. – V. 2. – №. 14. – P. 8-15.
24. . Kuleshova T.E. Concentration cell based on electrogenic processes in the root environment / T.E. Kuleshova [et al.] // Technical Physics Letters. – 2022. – V. 48. – № 4. – P. 66-69. DOI: 10.21883/TPL.2022.04.53176.19066.
25. . Kuleshova T.E. Influence of the electrode systems parameters on the electricity generation and the possibility of hydrogen production in a plant-microbial fuel cell / T.E. Kuleshova [et al.] // International Journal of Hydrogen Energy. – 2022. – № 47. – P. 24297-24309. DOI: 10.1016/j.ijhydene.2022.06.001.
26. . Kuzmin A.G. Small-sized quadrupole mass spectrometers for the analysis of the composition of gaseous media in medicine and ecology / A.G. Kuzmin, Yu.A. Titov //Vacuum equipment and technology – 2015. – V. 25. – №. 2. – P. 35-36.
27. . Sims D.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages / D.A. Sims, J.A. Gamon // Remote sensing of environment. 2002. – V. 81. – №. 2-3. – P. 337-354. DOI: 10.1016/S0034-4257(02)00010-X.
28. . Peñuelas J. The reflectance at the 950–970 nm region as an indicator of plant water status / J. Peñuelas [et al] // International journal of remote sensing. 1993. – V. 14. – №. 10. – P. 1887-1905. DOI: 10.1080/01431169308954010.
29. . Gamon J.A. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels / J.A. Gamon, L. Serrano, J.S. Surfus // Physiol. Comp. Oecol. – 1997. – V. 112. – P. 492-501. DOI: 10.1007/s004420050337.
30. . MINI-PAM Photosynthesis Yield Analyzer Manual. Edition 3. – М.: Heinz Walz GmbH, 2018. – 197 p.
31. . Ermakov A.I. Methods of biochemical research of plants / A.I. Ermakov. – M.: Agropromizdat, 1987. – 429 с.
32. . Guidelines for the determination of nitrates and nitrites in crop production. – М.: MH RSFSR, 1990. – 49 P.
33. . Skurikhin I.M., Tutelyan V.A. Guidelines for methods of analyzing the quality and safety of food products / I.M. Skurikhin, V.A. Tutelyan. – M.: Publishing House of Medicine, 1998. – 342 P.
34.
Review
For citations:
Kuleshova T.E., Ezerina E.M., Vertebny V.E., Khomyakov Yu.V. Gas composition in the near-electrode areas of bioelectrochemical systems based on the electrogenic properties of the tomato root environment. Alternative Energy and Ecology (ISJAEE). 2023;(10):64-79. (In Russ.) https://doi.org/10.15518/isjaee.2023.10.064-079