Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Potential possibilities of hydrogen storage in solid-state materials

https://doi.org/10.15518/isjaee.2023.10.080-093

Abstract

                A variant of a hydrogen battery based on electrochemical systems has been studied. Nickel was used as the base, as a material with a greater tendency to absorb hydrogen. Nixy-H(D)z, composites have been synthesized electrochemically, in which, with an increase in the boron content, the solubility of the incorporated hydrogen improves. Boron is a trap for hydrogen atoms in Ni-B electrochemical composites.

                The analysis of data related to the study of the internal friction of pure boron filaments is carried out. The presence of low-temperature peaks of internal friction of boron filaments is shown. The nature of the temperature dependence of internal friction for boron and the temperature dependence of hydrogen extraction from Nix-By-Hz electrochemical systems are compared. The presence of relaxation vibrations in structures containing boron causes the free flow of hydrogen from these systems at room temperature. An increase in the concentration of boron in the system should lead to an increase in the magnitude of the peak of internal friction and to its displacement to a region of lower temperatures, unlike pure nickel.

                In the presence of boron, the hydrogen permeability of nickel is reduced, since tensile stresses occur in the vicinity of the substitution impurity of a small atomic radius – boron embedded in the FCC lattice of nickel. Hydrogen accumulates near boron to a greater extent than near nickel. The interaction potential of a hydrogen atom with an impurity trap, a boron atom, is estimated at 0.42 eV.

The influence of boron concentration on the structure of nickel-boron-hydrogen composites is substantiated. An increase in the concentration of the alloying component boron in nickel increases the dispersion, leads to the alignment of the surface profile and the formation of structures of the nanoscale range.

                The results of studies of the kinetics of hydrogen desorption from Ni-B electrochemical composites are presented. The hydrogen content in Nix-By-Hz samples (9 at. % boron), measured by the vacuum extraction method, was 600 cm3 /100 g, which is significantly higher than the corresponding value for electrochemical nickel ~100 cm3 /100 g.

                The spectra of thermal desorption of deuterium from Ni–B composites pre-implanted with various doses of deuterium ions at T~100 K have been studied. It has been established that the structure of the deuterium thermal desorption spectrum is a function of the implantation dose. The deuterium content for nickel corresponds to the ratio Ni:D = 1:1, and for the composite Ni95B5 [Ni95:B5] :D = 1:1,25. For nickel, a clearly defined peak is formed with a maximum temperature of 325 K. For the Ni–B composite, the thermal desorption spectrum has a blurred peak with a maximum temperature of 325 K and a deuterium desorption region in the temperature range of 250-500 K.

About the Author

A. V. Zvyagintseva
Voronezh State Technical University
Russian Federation

Alla Vitalievna Zvyagintseva, Candidate of Technical Sciences, Associate Professor,

14, Moskovsky pr., Voronezh, 394026.



References

1. . Oudriss A., Creus J., Bouhattate J., Conforto E., Berziou C., Savall C., Feaugas X. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Materialia, 2012. No. 60, pp. 6814-6828.

2. . Звягинцева А.В. Гибридные функциональные материалы, формирующие металлические структуры с оптимальной дефектностью для хранения водорода в гидридной форме /Международный научный журнал Альтернативная энергетика и экология. – Саров: Изд-во «Научно-технический центр «ТАТА», 2017. – Номер: 16-18 (228-230). - С. 89-103.

3. . Zvyagintseva A.V. Hydrogen permeability of nanostructured materials based on nickel, synthesized by electrochemical method /A.V. Zvyagintseva //Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties (NAP-2017). - IEEE Catalog Number: CFP17F65-ART, 2017. - Part 2 - 02NTF41-1-02NTF41-5.

4. . Звягинцева, А.В. Способность материалов на основе никеля наноразмерного диапазона к аккумулированию водорода /А.В. Звягинцева // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). – 2015. – № 21. – С. 150–155.

5. . Звягинцева А.В., Шалимов Ю.Н. Особенности электрохимического образования Ni-B покрытий // Технология машиностроения. - Москва, 2008. - № 3. - С. 27-34.

6. . Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001; 414:353-8.

7. . Crabtree G W, Dresselhaus M S, Buchanan MV. (2004). The hydrogen economy. Physics Today. Dec; 57(12):39-44.

8. . Ohi J. Hydrogen energy cycle: An overview. J Mater Res 2005 Dec; 20(12):3180-7.

9. . Orimo S, Nakamura Y, Eliseo J.R, Züttela A, Jensen C.M. (2007) Complex Hydrides for Hydrogen Storage. Chem Rev. [107(10)], 4111-32.

10. . Jain I.P, Jain P, Jain A. (2010) Novel hydrogen storage materials: A review of lightweight complex hydrides. J Alloys Compd. [Aug 6; 503(2)], 303-39.

11. . Graetz J. (2009) New approaches to hydrogen storage. Chem. Soc. Rev. (38), 73-82.

12. . Rowsell J.L.C, Yaghi O.M. (2005) Strategies for Hydrogen Storage in Metal–Organic Frameworks. Angew Chem. Int. publ. (44), 4670-9.

13. . El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O'Keeffe M, et al. (2007) Designed Synthesis of 3D Covalent Organic Frameworks. Science. (316), 268-72.

14. . Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, et al. (2003) Hydrogen Storage in Microporous Metal-Organic Frameworks. Science. (300), 1127-9.

15. . Berseth PA, Harter AG, Zidan R, Blomquist A, Araujo CM, Scheicher RH, et al. (2009) Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4. Nano Lett. [9(4)], 1501-5.

16. . Li M, Li, Y, Zhou. Z, Shen. P, Chen. Z. (2009) Ca-Coated Boron Fullerenes and Nanotubes as Superior Hydrogen Storage Materials. Nano Lett. (9), 1944-8.

17. . Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U. (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys. [Jun 7; 9(21)], 2643-53.

18. . Suzuki K., Fujimori H., Hashimoto K. (1987) Amorfnye metally.[Amorphous metals]. Moscow. Metallurgy publ. (in Russian), 328.

19. . Belov M.P., Isaev E.I., Vekilov Yu. Kh. (2010). Ab initio lattice dynamics of CoH and NiH. Journal of Alloys and Compounds, doi: 10.1016/j.jallcom.2010.09.164.

20. . Ghigo G., Roos B.O., Stancil P.C., Weck P.F. (2004) A theoretical study of the exited states of CrH: Potential energies, transition moments, and lifetimes. J. Chem. Phys. 121 (17), 8194-200.

21. . Звягинцева А.В., Гусев А.Л., Шалимов Ю.Н. Кинетика процессов электрохимического наводороживания металлов в присутствии бора /Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE), 2009. - № 4 (72). С. 20-27.

22. . Zvyagintseva A.V. Hybrid functional materials forming the metal structure with optimal imperfection for storage of hydrogen in hydride form /International Journal of Hydrogen Energy. 2020. Т. 45. № 46. С. 24991-25001.

23. . Шалимов Ю.Н. Влияние тепловых и электрических полей на электрохимические процессы при импульсном электролизе. Дисс. на соискание ученой степени доктора технических наук, Иваново, ИГХТУ, 2007. 363 с.

24. . Звягинцева А.В. Структурные и примесные ловушки для точечных дефектов: монография/А.В. Звягинцева. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017. 216 с.

25. . Soloveichik G.L. (2007) Metal Borohydrides as Hydrogen Storage Materials. Material Matters. 2 (2), 11-15.

26. . Шрейдер А.В. Водород в металлах. М.: Знание. 1979. - 63 с.

27. . Звягинцева А.В. Взаимосвязь структуры и свойств гальванических никелевых покрытий, легированных бором, в изделиях электронной техники //Гальванотехника и обработка поверхности. 2007. т. XV. №1. C. 16-22.

28. . Belkova N.V., Epstein L.M., Filippov O.A., Shubina E.S. (2016) Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chem. Rev. 116 (15), 8545-8587.

29. . Бор: получение, структура и свойства: материалы IV Международного симпозиума по бору / [ред. кол.: Ф.Н. Тавадзе и др.]. - Москва: Наука, 1974. – 266 c.

30. . Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Атомиздат, 1975. 376 с.

31. . Соболев А.С, Федоров Т.Ф. Диаграмма состояния системы никель-бор / «Изв. АН СССР. Неорганические материалы», 1967. Т. 3. № 4. С. 723-726.

32. . Тавадзе Ф.Н. Внутреннее трение в металлах и сплавах (обзоры). М.: «Наука», 1966. 244 с.

33. . Тавадзе Ф.Н., Цагарейшвили Г.В. Исследование внутреннего трения в кристаллическом боре. / Релаксационные явления в твердых телах (обзоры). М.: «Металлургия», 1968. 695 с. (C. 363-364).

34. . Блантер М.С., Пигузов Ю.В. и др. Метод внутреннего трения в металловедческих исследованиях. М.: Металлургия. 1991. 248 с.


Review

For citations:


Zvyagintseva A.V. Potential possibilities of hydrogen storage in solid-state materials. Alternative Energy and Ecology (ISJAEE). 2023;(10):80-93. (In Russ.) https://doi.org/10.15518/isjaee.2023.10.080-093

Views: 202


ISSN 1608-8298 (Print)