Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Prospects for implementation of hydrogen filling stations in the Russian Federation

https://doi.org/10.15518/isjaee.2023.11.133-145

Abstract

   The economy of the Russian Federation is aimed at developing a fuel and energy complex that uses environmentally friendly energy, which corresponds to the global trend of reducing emissions of harmful substances into the atmosphere during the production of various types of products. Decarbonization is one of the biggest challenges of modern society. To solve this problem, renewable energy sources are being actively introduced, as well as various types of fuel, the combustion of which produces a minimum content of emissions. Among them, we can highlight the fuel that has the greatest prospects; this is hydrogen, a fuel with the highest energy content, reaching a value of 120 MJ/kg. Unlike renewable energy sources, the practice of which in a number of countries has caused a crisis in the reliability of the energy system, hydrogen technologies make it possible to achieve the task of decarbonization with minimal impact on the environment at all stages: production, transportation, combustion, without compromising reliability. The main problems of mass introduction of hydrogen technologies are the difficulty in obtaining, transporting and storing hydrogen fuel. Following the signing of hydrogen strategies, most developed countries are considering using hydrogen as a vehicle fuel. Hydrogen transport, unlike electric transport, is not limited by range, but the high cost of hydrogen transport and the lack of refueling infrastructure hinder the development of this type of technology. Currently, the most common fuel cell system is FCV (fuel cell vehicle). The article presents the concept of hydrogen refueling, taking into account different technologies for the production of hydrogen fuel. Hydrogen must be stored at a filling station at a pressure of 300-800 bar, in a gaseous or liquid state. An analysis of the cost of construction and  subsequent operation of hydrogen filling stations revealed criteria for the economic efficiency of their implementation, depending on the amount of fuel consumed and the storage method.

About the Authors

G. E. Marin
Kazan State Power Engineering University
Russian Federation

George Marin, Candidate of Technical Sciences, Senior Lecturer

Kazan

Education: Kazan State Power Engineering University (2011); Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines; energy systems using fossil fuels; Publications: 95; h-index: 15; Scopus Author ID: 57213835443; Research ID: AGS-9168-2022



A. V. Titov
Kazan State Power Engineering University
Russian Federation

Alexandr Titov, Candidate of Technical Sciences, Assistant professor

Kazan

Education: Kazan National Research Technical University named after. A.N.
Tupolev (1984); Current Field of Interest and Activities: hydrogen energy; mathematical modeling of turbomachines; energy systems using fossil fuels; Publications: 112; h-index: 10; Scopus Author ID: 56343587900; Research ID: GLR-9981-2022



A. R. Akhmetshin
Kazan State Power Engineering University
Russian Federation

Azat Akhmetshin, Candidate of Technical Sciences, Assistant professor

Kazan

Education: Kazan State Power Engineering University (2009); Current Field of Interest and Activities: hydrogen energy; mathematical model-ing of turbomachines; energy systems using fossil fuels; Publications: 180; h-index: 27



References

1. Edwards R.L.The status of hydrogen technologies in the UK: A multi-disciplinary review / R.L. Edwards, C. Font-Palma, J. Howe // Sustainable Energy Technologies and Assessments. – 2021. – Vol. 43. – Article Number 100901. – DOI: 10.1016/j.seta.2020.100901.

2. Acar C. The potential role of hydrogen as a sustainable transportation fuel to combat global warming / C. Acar, I. Dincer// International Journal of Hydrogen Energy. – 2020. – Vol. 45. – Р. 3396-3406.– DOI: 10.1016/J.IJHYDENE.2018.10.149.

3. Farahani S.S. Hydrogen-based integrated energy and mobility system for a real-life office environment / S.S. Farahani, C.Bleeker, A. van Wijk, Z. Lukszo // Applied Energy. – 2020. – Article Number 114695. – DOI: 10.1016/j.apenergy.2020.114695.

4. Jülich, H<sub>2</sub> Mobility analyse cost of battery, hydrogen infrastructure // Fuel Cells Bull. – 2018. – Vol. 2018. – Iss. 2. – Р. 9. – DOI: 10.1016/S1464-2859(18)30053-1.

5. Lahnaoui A. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks / A. Lahnaoui, C. Wulf, H. Heinrichs, D. Dalmazzone // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – Iss. 35. – P. 19302-19312. – DOI: 10.1016/j.ijhydene.2018.10.234.

6. Kwasie M. Hydrogen Fuel Cell Vehicle Infrastructure Analyzing Barriers to Investment and Entry to Support Stakeholder Collaboration / M. Kwasie, J. Marcellin, F.M. Sojo, B. Wolkon // Sustainability Lab, Spring. – 2015. – pp. 1-15.

7. Wang J. Barriers of scaling-up fuel cells: cost, durability and reliability/ J. Wang // Energy. – 2015. – Vol. 80. – P. 509-521. – DOI: 10.1016/j.energy.2014.12.007.

8. Depcik C. Comparison of lithium ion batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle / C. Depcik, T. Cassady, B. Collicott, S. P. Burugupally, X. Li, S.S. Alam, et al. // Energy Conversion and Management. – 2020. – Vol. 207. – Article Number 112514. – DOI: 10.1016/j.enconman.2020.112514.

9. Ogden, J. M. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development / J. M. Ogden, M. M. Steinbugler, T. G. Kreutz // Journal of Power Sources. – 1999. – Vol. 79, No. 2. – P. 143-168. – EDN: ACPJIC.

10. Xu C. What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach / C. Xu, Y. Wu, S. Dai // Energy Policy. – 2020. –Vol. 142. – Article Number111495. – DOI: 10.1016/j.enpol.2020.111495.

11. Grüger F. Carsharing with fuel cell vehicles: sizing hydrogen refueling stations based on refueling behavior / F. Grüger, L. Dylewski, M. Robinius, D. Stolten // Applied Energy. – 2018. – Vol. 228. – pp. 1540-1549. – DOI: 10.1016/j.apenergy.2018.07.014.

12. Record number of new hydrogen stations in 2020 // Fuel Cells Bull. – 2021. – Vol. 2021. – Iss. 2. – p. 1. – DOI: 10.1016/S1464-2859(21)00056-0.

13. Hettinger W. Refueling equipment for liquid hydrogen vehicles / W. Hettinger, F. Michel, P. Ott, F. Theissen // International Journal of Hydrogen Energy. – 1998. – Vol. 23. – Iss. 10. – P. 943-947. – DOI: 10.1016/s0360-3199(97)00137-7.

14. Marin G. Analysis of the operation of a gas turbine plant when burning hydrogen fuel / G. Marin,B. Osipov, A. Akhmetshin // Proceedings - 2022 International Russian Automation Conference, RusAutoCon 2022.Publisher: IEEE.– 2022.– Р. 961–965. – DOI: 10.1109/RusAutoCon54946.2022.9896214.

15. Ambrose U. An advancement in CO<sub>2</sub> utilization through novelgas switching dry reforming / U. Ambrose, Z. Abdelghafour,A. Shahriar// International Journal of Greenhouse GasControl.– 2019. – Vol. 90. – Article Number 102791. – DOI: 10.1016/j.ijggc.2019.102791.

16. Hu J. Integrated gasification and catalytic reforming syngas production from corn straw with mitigated greenhouse gas emission potential / J. Hu, D. Li, D-J. Lee, Q. Zhang, W. Wang, S. Zhao, Z. Zhang, C. He // Bioresource Technology. – 2019. – Vol. 280. – P. 371-377. – DOI: 10.1016/j.biortech.2019.02.064.

17. Islamova S. I. Kinetic analysis of the thermal decomposition of lowland and high-moor peats / S. I. Islamova, S. S. Timofeeva, A. R. Khamatgalimov, et al. // Solid Fuel Chem. – 2020. – Vol. 54. – Р. 154–162. – DOI: 10.3103/S0361521920030040.

18. Duan W. Pyrolysis of coal by solidheat carrier-experimental study and kinetic modeling / W. Duan, Q. Yu, H. Xie, Q. Qin//Energy. – 2017. – Vol. 135. – P. 317-326. – DOI: 10.1016/j.energy.2017.06.132.

19. Suzuki C. The refinement of the rate determining process in sulfur trioxide electrolysis using the electrolysis cell / C. Suzuki, T. Nakagiri, K. Aoto // International Journal of Hydrogen Energy. – 2007. – Vol. 32. – Iss. 12. – P. 1771-1781. – DOI: 10.1016/j.ijhydene.2007.01.013.

20. Marin G.E. Simulation of the operation of a gas turbine installation of a thermal power plant with a hydrogen fuel production system / G. E. Marin, B. M. Osipov, A. V. Titov, A. R. Akhmetshin// International Journal of Hydrogen Energy. – 2023. – Vol. 48. – Iss. 12. – P. 4543-4550. – DOI: 10.1016/j.ijhydene.2022.10.075.

21. Li Z. Development of safety standard for mobile hydrogen refueling facilities in China / Z. Li, X. Pan, K. Sun, W. Zhou, D. Gao, S. Liu, J. Ma // International Journal of Hydrogen Energy. – 2014. – Vol. 39. – Iss. 25. – P. 13935-13939. – DOI: 10.1016/j.ijhydene.2014.02.017.

22. Kim E. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea / E. Kim, J. Park, J. H. Cho, I. Moon//International Journal of Hydrogen Energy. – 2013. – Vol. 38. – Iss. 3. – P. 1737-1743. – DOI: 10.1016/j.ijhydene.2012.08.079.

23. San Marchi C. Overview of the DOE hydrogen safety, codes and standards program, part 3: Advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards / C. San Marchi, E. S. Hecht, I. W. Ekoto, K. M. Groth, C. LaFleur, B. P. Somerday, R. Mukundan, T. Rockward, J. Keller, C. W. James // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – Iss. 11. – P. 7263-7274. – DOI: 10.1016/j.ijhydene.2016.07.014.

24. Apostolou D. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects / D. Apostolou, G. Xydis // Renewable and Sustainable Energy Reviews. –2019. – Vol. 113. – Article Number 109292. – DOI: 10.1016/j.rser.2019.109292.

25. Moradi R. Hydrogen storage and delivery : Review of the state of the art technologies and risk and reliability analysis / R. Moradi, K. M. Groth // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – Iss. 23. – P. 12254-12269. – DOI:10.1016/j.ijhydene.2019.03.041.

26. Minutillo M. Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario / M. Minutillo, A. Perna, A. Forcina, S. Di Micco, E. Jannelli // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – Iss. 26. – P. 13667-13677. – DOI: 10.1016/j.ijhydene.2020.11.110.

27. Weber A. C. Design of hydrogen transmission pipeline networks with hydraulics / A. C. Weber, L. G. Papageorgiou // Chemical Engineering Research and Design. – 2018. – Vol. 131. – P. 266-278. – DOI: 10.1016/j.cherd.2018.01.022.

28. Lowesmith B. J. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS / B. J. Lowesmith, G. Hankinson, S. Chynoweth // International Journal of Hydrogen Energy. – 2014. – Vol. 39. – Iss. 35. – P. 20516-20521. – DOI: 10.1016/j.ijhydene.2014.08.002.

29. Kunniyoor K. R. Liquid hydrogen pipeline chill-down: Mathematical modelling and investigation / K. R. Kunniyoor, R. Govind, K. S. Venkateswaran, P. Ghosh // Cryogenics. – 2021. – Vol. 118. – Article Number 103324. – DOI: 10.1016/j.cryogenics.2021.103324.

30. Chen L. Thermodynamic analysis of the parato-ortho hydrogen conversion in cryo-compressed hydrogen vessels for automotive applications / L. Chen, R. Xiao, C. Cheng, G. Tian, S. Chen, Y. Hou // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – Iss. 46. – P. 24928-24937. – DOI: 10.1016/j.ijhydene.2020.05.252.

31. Hu Y. A new cavity profile for a diaphragm compressor used in hydrogen fueling stations / Y. Hu, X. Xu,W. Wang // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – Iss. 38. – P. 24458-24469. – DOI: 10.1016/j.ijhydene.2017.08.058.

32. Geng M. Profile design of twin screw air compressor for fuel cell / M. Geng, L. Wang, D. Cui, X. Li, J. Li, H. Jiang // Energy Reports. – 2022. – Vol. 8. – P. 21-26. – DOI: 10.1016/j.egyr.2022.03.047.

33. Tahan M-R. Recent advances in hydrogen compressors for use in large-scale renewable energy integration / M-R. Tahan // International Journal of Hydrogen Energy. – 2022. – Vol. 47. – Iss. 83. – P. 35275-35292. – DOI: 10.1016/j.ijhydene.2022.08.128.

34. Aykut Y. Catalyst development for viability of electrochemical hydrogen purifier and compressor (EHPC) technology / Y.Aykut, A. B.Yurtcan // International Journal of Hydrogen Energy. – 2022. – Vol. 47. – Iss. 45. – P. 19619-19632. – DOI: 10.1016/j.ijhydene.2021.12.148.

35. Uyar T. S. Integration of hydrogen energy systems into renewable energy systems for better design of 100 % renewable energy communities / T. S. Uyar, D. Beşikci // International Journal of Hydrogen Energy. – 2017. – Vol. 42. – Iss. 4. – P. 2453-2456. – DOI: 10.1016/j.ijhydene.2016.09.086.

36. Elberry A.M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems / A.M. Elberry, J. Thakur, A. Santasalo-Aarnio, M. Larmi // International Journal of Hydrogen Energy. – 2021. – Vol. 46. – Iss. 29. – P. 15671-15690. – DOI: 10.1016/j.ijhydene.2021.02.080.

37. Bellosta von Colbe J. Application of hydrides in hydrogen storage and compression: Achievements, out-look and perspectives / J. Bellosta von Colbe, J-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, et al. // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – Iss. 15. – P. 7780-7808. – DOI: 10.1016/j.ijhydene.2019.01.104.

38. Sebbahi S. Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis / S. Sebbahi, N. Nabil, A. Alaoui-Belghiti, S. Laasri, S. Rachidi, A. Hajjaji // Materials Today: Proceedings. – 2022. – Vol. 66. – Part 1. – P. 140-145. – DOI: 10.1016/j.matpr.2022.04.264.

39. Kim S. Highly selective porous separator with thin skin layer for alkaline water electrolysis / S. Kim, J. H. Han, J. Yuk, S. Kim, Y. Song, S. So, K. T. Lee, T-H. Kim // Journal of Power Sources. – 2022. – Vol. 524. – Article Number 231059. – DOI: 10.1016/j.jpowsour.2022.231059.

40. Barei ß K. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems /K. Bareiß, C. de la Rua, T. Hamacher // Applied Energy. – 2019. – Vol. 237. – P. 862-872. – DOI: 10.1016/j.apenergy.2019.01.001.

41. Lim A. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis / A. Lim, H-j. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, Y-E. Sung, J. H. Jang, H. S. Park // Journal of Industrial and Engineering Chemistry. – 2019. – Vol. 76. – P. 410-418. – DOI: 10.1016/j.jiec.2019.04.007.

42. He H. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands / H. He, Y. Huang, A. Nakadomari, H. Masrur, N. Krishnan, A. M. Hemeida, A. Mikhaylov, T. Senjyu //Renewable Energy. – 2023. – Vol. 202. – P. 1436-1447. – DOI: 10.1016/j.renene.2022.12.046.

43. Diaz L.A. Alkali-doped polyvinyl alcohol – Polybenzimidazole membranes for alkaline water electrolysis / L.A. Diaz, R.E. Coppola, G.C. Abuin, R. Escudero-Cid, D. Herranz, P. Ocón // Journal of Membrane Science. – 2017. – Vol. 535. – P. 45-55. – DOI: 10.1016/j.memsci.2017.04.021

44. Lo C. K. New integrated simulation tool for the optimum design of bifacial solar panel with reflectors on a specific site / C. K. Lo, Y. S. Lim, F. А. Rahman // Renewable Energy. – 2015. – Vol. 81. – P. 293-307. – DOI: 10.1016/j.renene.2015.03.047.

45. Xu T. The Effect of Three-phase Voltage Imbalance at PCC on Solar Panel Output Power / T. Xu, J. Pan, Y. Jiang, H. Hou, Y. Li // Procedia Computer Science. – 2015. – Vol. 52. – P. 1218-1224. – DOI: 10.1016/j.procs.2015.05.163.

46. Marin G.E. Gas turbine operating as part of a thermal power plant with hydrogen storages / G.E. Marin, B.M. Osipov, A.V. Titov, A.R. Akhmetshin // International Journal of Hydrogen Energy. – 2023. – Vol. 48. – Iss. 86. – P. 33393-33400. – DOI: 10.1016/j.ijhydene.2023.05.109.

47. Shubina A.S. Study of the possibility of creating autonomous low-power thermal power plants using alternative energy sources / A. S. Shubina, G. E. Marin, A. R. Akhmetshin // Journal of Physics: Conference Series. – 2021. – Vol. 2096. – Article Number 012077. – DOI: 10.1088/1742-6596/2096/1/012077.

48. Xu X. Risk-based scheduling of an off-grid hybrid electricity/hydrogen/gas/ refueling station powered by renewable energy / X. Xu, W. Hu, W. Liu, D. Wang, Q. Huang, R. Huang, Z. Chen // Journal of Cleaner Production. – 2021. – Vol. 315. – Article Number 128155. – DOI: 10.1016/j.jclepro.2021.128155.


Review

For citations:


Marin G.E., Titov A.V., Akhmetshin A.R. Prospects for implementation of hydrogen filling stations in the Russian Federation. Alternative Energy and Ecology (ISJAEE). 2023;(11):133-145. (In Russ.) https://doi.org/10.15518/isjaee.2023.11.133-145

Views: 117


ISSN 1608-8298 (Print)