

Promising Ti-Al-based materials obtained by «hydride technology» intended for hydrogen energetics
https://doi.org/10.15518/isjaee.2023.07.052-069
Abstract
In this work, Ti-H compounds were studied by means of ATAT, USPEX codes equipped with the QE and VASP interface. The forecast estimation allowed revealing a number of stable and geometrically optimized hydrides having various atomic compositions: Ti6H2, Ti5H3, Ti5H2, Ti4H3, Ti3H5 of a simple triclinic group, and highly symmetric alloys TiH2, Ti2H2, Ti6H2, Ti3H5. The stability of the hydrides was evaluated by means of calculations from first-principles and the convex hull method. Model estimations of the mechanical characteristics showed that the hydrides having a low mass density belonged to high-strength compounds. The identified hydrides could be included into the reference base of Ti-H compounds. The possibility of obtaining Ti-Al-based alloys supplemented with Sc, Y, Dy, Ho additives by the “Hydride technology” was considered. The lamellar structure formation when adding 2 at.% of Sc, Y to Ti-50Al (at.%) was detected. Isotypic compounds Y6Ti4Al43, Dy6Ti4Al43, Ho6Ti4Al43 were formed when adding 2 at.% of Y, Dy, Ho to Ti-50Al (at.%). The values of microhardness and electrical resistance were provided.
About the Authors
N. I. KarakchievaRussian Federation
Karakchieva Natalia Ivanovna - PhD, Senior Researcher,
Lenina Ave., 36, Tomsk, Russian Federation, 634050
tel.: +7 (3822)412-319
Yu. A. Abzaev
Russian Federation
Abzaev Yuri Afanasievich - D. in Physics and Mathematics, Professor, Department of Higher Mathematics
pl. Solyanaya, 2, Tomsk, Russian Federation, 634003
tel.: +7 (3822) 90-33-06
V. V. Norin
Russian Federation
Norin Vladislav Vadimovich - Assistant, Leading Specialist of the Pre-Project Preparation Department
Lenina Ave., 36, Tomsk, Russian Federation, 634050
st. Alexey Belentsa, 9/1, Tomsk, Russian Federation, 634050
tel.: +7 (3822)412-319
+7 (3822) 909-969
A. S. Knyazev
Russian Federation
Knyazev Alexei Sergeevich - Doctor of Chemical Sciences, Associate Professor, Acting Dean of the Department of Chemistry, Federal State Autonomous Educational Institution of Higher Education
Lenina Ave., 36, Tomsk, Russian Federation, 634050
tel.: +7 (3822)412-319
V. I. Sachkov
Russian Federation
Sachkov Viktor Ivanovich - D. in Chemis-try, Head of the Laboratory of Chemical Technology
Lenina Ave., 36, Tomsk, Russian Federation, 634050
tel.: +7 (3822)412-319
I. A. Kurzina
Russian Federation
Kurzina Irina Alexandrovna - Doctor of Physics and Mathematics sciences, head. De-partment of Natural Compounds, Pharmaceutical and Medicinal Chemistry, Chemistry Department
Lenina Ave., 36, Tomsk, Russian Federation, 634050
tel.: +7 (3822)412-319
References
1. . Fateev, V.N. Problemy akkumulirovaniya i khraneniya vodoroda // V.N. Fateev [i dr.] // Chemical Problems. – 2018. – T. 16. – № 4. – S. 453483.
2. . Tarasov, B.P. Metody khraneniya vodoroda i vozmozhnosti ispol'zovaniya metallogidridov / B.P. Tarasov [i dr.] // Mezhdunarodnyi nauchnyi zhurnal «Al'ternativnaya ehnergetika i ehkologiYA». – 2005. – T. 32. – № 12. – S. 1437.
3. . Karpov D.A. Vodorodnaya ehnergetika: khranenie vodoroda v svyazannom sostoyanii [Tekst] / D.A. Karpov, V.N. Litunovskii. – SanktPeterburg: AO “NIIEHFA”, 2016. – 94 s.
4. . Desai, Fenil J. A critical review on improving hydrogen storage properties of metal hydride via nanostructuring and integrating carbonaceous materials / F.J. Desai [et all] // International Journal of Hydrogen Energy. – 2023. In Press
5. . ZengYi, Li Optimizing hydrogen ad/desorption of Mgbased hydrides for energystorage applications / Z.Y. Li [et all] // Journal of Materials Science and Technology/ – 2023/ – V. 141/ – P. 221235.
6. . Shusuke, U. Thermodynamic Analysis of the TiH and ZrH Binary Phase Diagrams / U. Shusuke, H. Ohtani and M. Hasebe. // Journal of the Japan Institute of Metals. – 2007. – V. 71. – No. 9. – P. 721729.
7. . Abzaev, Yu. A. Refinement of the Structure of HydrogenVacancy Complexes in Titanium by the Rietveld Method / Yu. A. Abzaev [et all] // Physics of the Solid State. – 2016. – V. 58. – No.10. – P. 19391944.
8. . Nations, S. Metal hydride compositionderived parameters as machine learning features for material design and H2 storage / S. Nations [et all] // Journal of Energy Storage. – 2023. – 107980. – P. 117.
9. . Karpov, D.A., Litunovskii V.N. Vodorodnaya ehnergetika: khranenie vodoroda v svyazannom sostoyanii / D.a. Karpov, V.N. Litunovskii. – SanktPeterburg: AO “NIIEHFA”, 2016. – 94 s.
10. . Krainov, V.I. Tekhnologicheskaya deformiruemost' titanovykh splavov [Tekst] / V.I. Krainov, V.S. Kropachev // Vestnik YUURGU. Seriya «MetallurgiYA». – 2015. – T. 15. – № 2. – S.115119.
11. . Appel, F., J.D.H. Paul and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Weinheim: WileyVCH. – 2011. – p.178.
12. . Gapontsev, A.V., Kondrat'ev V.V. Diffuziya vodoroda v neuporyadochennykh metallakh i splavakh [Tekst] / A.V. Gapontsev, V.V. Kondrat'ev // Uspekhi fizicheskikh nauk. – 2003. – T. 173. – № 10. – S. 1107–1129.
13. . Billeter, E. Surface Properties of the HydrogenTitanium System [Tekst] / E. Billeter, Z. Lodziana, A. Borgschulte // The journal of physical chemistry. C, Nanomaterials and interfaces. – 2021. – V. 45. – № 125. – P. 2533925349.
14. . Walle, A. van de Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit / A. van de Walle // CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. – 2009. – No 33. – P. 266 – 278.
15. . Walle, A. van de Selfdriven latticemodel monte carlo simulations of alloy thermodynamic properties and phase diagrams [Text] / A. van de Walle, M.D. Asta // Modelling and Simulation in Materials Science and Engineering. – 2002. – V. 521. – No 10. – P. 521538.
16. . Oganov, A.R. Crystal structure prediction using evolutionary algorithms: principles and applications [Text] / A.R. Oganov, C.W. Glass // Journal of Chemical Physics. – 2006, – No 12. – P. 244704.
17. . Oganov, A.R. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials / A.R. Oganov [et all] // Reviews in Mineralogy and Geochemistry. – 2010. – V. 71. – P. 271298.
18. . The Materials Project [Ehlektronnyi resurs]. – Rezhim dostupa: https://materialsproject.org. – Zaglavie s ehkrana. – (Data obrashcheniya: 23.06.2023).
19. . Clark, S.J. Zeitschrift fuer / S.J. Clark [et all] // Kristallographie. –2005. – V. 220. – No 56. – P. 567570.
20. . Crystallography Open Database [Ehlektronnyi resurs]. – Rezhim dostupa: https:// crystallography.net/. – Zaglavie s ehkrana. – (Data obrashcheniya: 23.06.2023).
21. . Automatic – FLOW for Materials Discovery [Ehlektronnyi resurs]. – Rezhim dostupa: https:// www.aflowlib.org. – Zaglavie s ehkrana. – (Data obrashcheniya: 23.06.2023).
22. . Materials data platform DICI [Ehlektronnyi resurs]. – Rezhim dostupa: https://cpddb.nims.go.jp/cpddb. – Zaglavie s ehkrana. – (Data obrashcheniya: 23.06.2023).
23. . Mazhnik, E. A model of hardness and fracture toughness of solids [Tekst] / E. Mazhnik and A. R. Oganov // Journal of Applied Physics. − 2019. − No 126. − P. 125109.
24. . Andrievskii, R.A. Materialovedenie gidridov / R.A. Andrievskii. – Moskva: Metallurgiya, 1986. – 130 s.
25. . David, E. An overview of advanced materials for hydrogen storage /E. David / Journal of Materials Processing Technology. – 2005. – V. 162–163. – P. 169177.
26. . Karakchieva, N. Influence of Dy and Ho on the Phase Composition of the Ti‐Al System Obtained by ‘Hydride Technology’ / N. Karakchieva [et all] // Materials. – 2022. – No 15. – P. 8584.
27. . Pisarev, A.A. Hydrogen adsorption on the surface of metals. In book: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Mechanisms, Modelling and Future Developments / A.A. Pisarev. – Sawston: Woodhead Publishing Limited. – 2012. – P. 326.
28. . Myuttertiz, EH. Gidridy perekhodnykh metallov / pod red. R.I. Krasnovoi. – Moskva: Mir. – 1975. –312 s.
29. . Spiridonova, T.I. Vzaimodeistvie vodoroda s primesyami v metallakh IVB gruppy [Tekst] / T.I. Spiridonova, A.V. Bakulin, S.E. Kul'kova. // Fizika tverdogo tela. – 2015. №10. – S.18731882
30. . Titanium aluminides In: Rahul Mitra / eds Intermetallic Matrix Composites / – Sawston: Woodhead Publishing, 2018. – 617 s.
31. . Karakchieva, N. The Influence of Scandium on the Composition and Structure of the TiAl Alloy Obtained by “Hydride Technology” / N. Karakchieva [et all] // Nanomaterials. – V. 918. – No. 918. – P. 113.
32. . Niemann, S. Ternary Aluminides A6T4Al43 (A= Y, Nd, Sm, GdLu, and U; T= Ti, V, Nb, and Ta) with Ho6Mo4Al43 Type Structure / S. Niemann, W. Jeitschko // Journal of Solid State Chemistry. – 1995. – V.116. – No 1. – P.131135.
33. . Karakchieva, N. The influence of yttrium on the phase composition of the TiAl system obtained by ‘Hydride Technology’ / N. Karakhieva [et all] // Metals. – 2022. – V. 1481. – No. 12. – P. 113.
34. . Raghavan, V. AlDyTi (AluminumDysprosiumTitanium) / V. Raghavan // Journal of Phase Equilibria and Diffusion. – 2005. – No 26. – P. 178–179.
35. . Raghavan, V. AlHoTi (AluminumHolmiumTitanium) / V. Raghavan // Journal of Phase Equilibria and Diffusion. – 2005. – No 26. – P. 184185.
36. . Bulanova, M.V. Physicochemical materials research phase equilibria during solidification in the Ti–TiAl–DyAl2–Dy region of the Ti–Dy–Al system / M.V. Bulanova [et all] // Powder Metallurgy and Metal Ceramics. – 2014. – V. 52. – No 1112.
37. . Nazarova, T.I. Microstructure and mechanical properties of intermetallic γTiAl alloy alloyed with dysprosium / T.I. Nazarova [et all] // Letters on materials. – 2017. – V.7. – No 3. – P. 307311.
Review
For citations:
Karakchieva N.I., Abzaev Yu.A., Norin V.V., Knyazev A.S., Sachkov V.I., Kurzina I.A. Promising Ti-Al-based materials obtained by «hydride technology» intended for hydrogen energetics. Alternative Energy and Ecology (ISJAEE). 2023;(7):52-69. (In Russ.) https://doi.org/10.15518/isjaee.2023.07.052-069