Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development and research of operational efficiency of a hybrid energy system based on hydrogen fuel cell and energy storage for railway industry

https://doi.org/10.15518/isjaee.2023.07.095-111

Abstract

The paper presents a 3 kW prototype of a hybrid energy system (HES) based on a proton exchange membrane fuel cell and lithium iron phosphate batteries to power remote consumers of the railway industry. A control system for ensure HES high efficiency and reduce hydrogen consumption is developed. The structure of the HES prototype is presented, and description of its main blocks and their characteristics is given. Experimental studies of the fuel cell used in the HES were carried out to determine the control system optimal settings. HES characteristic operating modes differing in the strategy of power distribution between the sources are formed using the principles of the finite state machine theory. The results of studies of the HES prototype in various operating modes are presented, which confirmed the operability of the device, the high quality of the electrical energy, the correctness of the control algorithm and the choice of control system settings.

About the Authors

A. B. Loskutov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Loskutov Alexey Borisovich - Doctor of technical sciences, professor, professor of the Department «Electric power engineering, power supply and power electronics»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



A. B. Dar’enkov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Dar'enkov Andrey Borisovich - Doctor of technical sciences, associate professor, dean of the Institute of Electric Power Engineering, head of the Department «Electrical equipment, electric drive and automation»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



I. A. Lipuzhin
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Lipuzhin Ivan Alekseyevich - Candidate of technical sciences, associate professor, senior researcher of the Research laboratory «Autonomous hybrid electric power complexes», associate professor of the Department «Electric power engineering, power supply and power electronics»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



A. V. Shalukho
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Shalukho Andrey Vladimirovich - Candidate of technical sciences, associate professor, head of the Youth Research Laboratory for the development of advanced energy storage systems, associate professor of the Department «Electric power engineering, power supply and power electronics»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



R. Sh. Bedretdinov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Bedretdinov Rustam Shamilevich - Candidate of technical sciences, associate professor, senior researcher of the Research laboratory «Autonomous hy-brid electric power complexes», associate professor of the Department «Electric power engineering, power supply and power electronics»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



V. V. Vanyaev
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Vanyaev Valery Vladimirovich - Candidate of technical sciences, associate professor, associate professor of the Department «Electrical equipment, electric drive and automation»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



A. V. Shakhov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Shahov Andrey Valentinovich - Candidate of technical sciences, associate professor of the Department «Electrical equipment, electric drive and automation»

24 Minin St., Nizhny Novgorod, 603155

Tel.: 8 (831) 432-91-85



References

1. . Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S.-P. Feng, J. Qu, P. K. Chu, Development and application of fuel cells in the automobile industry, Journal of Energy Storage, Volume 42, 2021, 103124, https://doi.org/10.1016/j.est.2021.103124.

2. . S. Ma, M. Lin, T.-E. Lin, T. Lan, X.Liao, F. Maréchal, J. Van Herle, Y. Yang, C. Dong, L. Wang, Fuel cell-battery hybrid systems for mobility and off-grid applications: A review, Renewable and Sustainable Energy Reviews, Volume 135, 2021, 110119, https://doi.org/10.1016/j.rser.2020.110119.

3. . Md. B. Hossain, Md. R. Islam, K. M. Muttaqi, D. Sutanto, A. P. Agalgaonkar, Advancement of fuel cells and electrolyzers technologies and their applications to renewable-rich power grids, Journal of Energy Storage, Vol. 62, 2023, 106842, https://doi.org/10.1016/j.est.2023.106842.

4. . K. Ou, W.-W. Yuan, M. Choi, S. Yang, S. Jung, Y.-B. Kim, Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system, International Journal of Hydrogen Energy, Volume 43, Issue 32, 2018, pp. 15433-15444, https://doi.org/10.1016/j.ijhydene.2018.06.072.

5. . C. I. Hoarcă and F. M. Enescu, on the energy efficiency of standalone fuel cell/renewable hybrid power sources. Part II: Simulation results for variable load profile with different renewable energy sources profiles (RES), 2018 International Conference on Applied and Theoretical Electricity (ICATE), 2018, pp. 1-5, doi: 10.1109/ICATE.2018.8551440.

6. . C. Xie, X. Xu, P. Bujlo, D. Shen, H. Zhao, and S. Quan, Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure, J. Power Sources, vol. 279, pp. 487–494, Apr. 2015. DOI: 10.1016/j.jpowsour.2015.01.029.

7. . G. Zhang, H. Li, C. Xiao, K. Jermsittiparsert, Optimal size selection for fuel cell and battery in a hybrid power system of the intercity locomotives, Journal of Cleaner Production, Volume 317, 2021, 128498, https://doi.org/10.1016/j.jclepro.2021.128498.

8. . J. Rurgladdapan, K. Uthaichana and B. Kaewkhamai, Optimal Li-Ion battery sizing on PEMFC hybrid powertrain using dynamic programming, 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 2013, pp. 472-477, doi: 10.1109/ICIEA.2013.6566415.

9. . X. Lü, X. Miao, W. Liu, J. Lü, Extension control strategy of a single converter for hybrid PEMFC/battery power source, Applied Thermal Engineering, Volume 128, 2018, pp. 887-897, https://doi.org/10.1016/j.applthermaleng.2017.09.003.

10. . S. Njoya Motapon, L. -A. Dessaint and K. Al-Haddad, A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft, IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1320-1334, March 2014, doi: 10.1109/TIE.2013.2257152.

11. . A. M. Bassam, A. B. Phillips, S. R. Turnock, P. A. Wilson, An improved energy management strategy for a hybrid fuel cell/battery passenger vessel, International Journal of Hydrogen Energy, Vol. 41, Issue 47, 2016, pp. 22453-22464, https://doi.org/10.1016/j.ijhydene.2016.08.049.

12. . Li, D.; Xu, B.; Tian, J.; Ma, Z. Energy management strategy for fuel cell and battery hybrid vehicle based on fuzzy logic. Processes 2020, 8, 882. https://doi.org/10.3390/pr8080882.

13. . X. Chi, F. Lin and Y. -X. Wang, "Disturbance and uncertaintyimmune onboard charging batteries with fuel cell by using equivalent load fuzzy logic estimation-based backstepping sliding-mode control," in IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 1249-1259, Sept. 2021, doi: 10.1109/TTE.2021.3052881.

14. . W. Zhang, J. Li, L. Xu and M. Ouyang, "Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy", Energy Convers. & Management, vol. 134, pp. 59-69, Dec. 2017.

15. . C. Tian, Y. Huangfu, S. Quan, P. Li, Y. Zhang and J. Zhao, "An H2-consumption-minimization-based energy management strategy of hybrid fuel cell/battery power system for UAVs," 2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, 2021, pp. 1-6, doi: 10.1109/PEAS53589.2021.9628651.

16. . T. Wang, Q. Li, W. Chen and T. Liu, "Application of energy management strategy based on state machine in fuel cell hybrid power system," 2017 IEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 2017, pp. 1-5, doi: 10.1109/ITEC-AP.2017.8080854.

17. . Y. Zhang, Y. Huangfu, W. Liu and L. Guo, "An energy management strategy based on state machine with power compensation for photovoltaic-PEMFC-lithium battery power system," 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 2019, pp. 1675-1680, doi: 10.1109/ICIT.2019.8843696.

18. . Z. Hong, Q. Li, Y. Han, W. Shang, Y. Zhu, W. Chen, An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive, International Journal of Hydrogen Energy, Volume 43, Issue 6, 2018, Pages 3261-3272, https://doi.org/10.1016/j.ijhydene.2017.12.117.

19. . X. Lü, Y. Wu, J. Lian, Y. Zhang, Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO, Renewable Energy, Volume 171, 2021, Pages 881-901, https://doi.org/10.1016/j.renene.2021.02.135.

20. . K. Ettihir, L. Boulon, K. Agbossou, Optimization-based energy management strategy for a fuel cell/battery hybrid power system, Applied Energy, Volume 163, 2016, Pages 142-153, https://doi.org/10.1016/j.apenergy.2015.10.176.

21. . Y. Wang, S. J. Moura, S. G. Advani, A. K. Prasad, Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation, International Journal of Hydrogen Energy, Vol-ume 44, Issue 16, 2019, pp. 8479-8492, https://doi.org/10.1016/j.ijhydene.2019.02.003.

22. . C. Sheng, J. Fu, D. Li, C. Jiang, Z. Guo, B. Li, J. Lei, L. Zeng, Z. Deng, X. Fu, X. Li, Energy management strategy based on health state for a PEMFC/Lithiumion batteries hybrid power system, Energy Conversion and Management, Volume 271, 2022, 116330, https://doi.org/10.1016/j.enconman.2022.116330.

23. . Loskutov, A.; Kurkin, A.; Shalukho, A.; Lipuzhin, I.; Bedretdinov, R. Investigation of PEM fuel cell characteristics in steady and dynamic operation modes. Energies 2022, 15, 6863. https://doi.org/10.3390/en15196863.

24. . Loskutov A.B., Lipuzhin I.A., Bedretdinov R.SH. Issledovanie kharakteristik POMTEH pri rabote v ustanovivshikhsya i dinamicheskikh rezhimakh // Intellektual'naya Ehlektrotekhnika. 2022. № 4. S. 53-77. DOI: 10.46960/2658-6754_2022_4_53.

25. . Kulikov, A., Loskutov, A., Kurkin, A., Dar’enkov, A., Andrey, K., Vanyaev, V., Shahov, A., Shalukho, A., Bedretdinov, R., Lipuzhin, I., Kryukov, E. Development and operation modes of hydrogen fuel cell generation system for remote consumers’ power supply. Sustainability. 2021. 13. 9355. 10.3390/su13169355.

26. . H.-B. Yuan, W.-J. Zou, S. Jung, Y.-B. Kim, Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm, International Journal of Hydrogen Energy, Volume 47, Issue 12, 2022, pp. 7932-7948, https://doi.org/10.1016/j.ijhydene.2021.12.121.

27. . L. Xian, G. Wang and Y. Wang, Implementation and control of a doubleinput DC/DC converter for PEMFC/battery hybrid power supply, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2012, pp. 285-290, doi: 10.1109/ICIEA.2012.6360738.

28. . P. I. Kruglykhin, R. A. Ufa, V. E. Rudnik, A. S. Vasil'ev, Otsenka vliyaniya ob"ektov solnechnoi generatsii na ustoichivost' ehnergoraiona so slabymi svyazyami // Intellektual'naya ehlektrotekhnika. – 2022. – № 3(19). – S. 79-99. – DOI 10.46960/2658-6754_2022_3_79.

29. . Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies 2020, 13, 3651. https://doi.org/10.3390/en13143651.

30. . Y. -S. Hsiao, Y. -F. Guo and F. -C. Wang, Robust converter control design for a hybrid PEMFC system, 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tsukuba, Japan, 2016, pp. 442-447, doi: 10.1109/SICE.2016.7749214.

31. . T. Wang, Q. Li, Y. Qiu, L. Yin, L. Liu and W. Chen, Efficiency extreme point tracking strategy based on FFRLS online identification for PEMFC system, IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 952-963, June 2019, doi: 10.1109/TEC.2018.2872861.

32. . T. Wang, Q. Li, L. Yin, B. Su and W. Chen, Optimized energy management strategy based on online extremum tracking for a PEMFC-battery power system, 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973837.

33. . J. Yan, Z. Rong, Y. Wang, A model of PEMFC-battery system to evaluate inner operating status and energy consumption under different energy management strategies, International Journal of Hydrogen Energy, Volume 47, Issue 5, 2022, Pages 3075-3086, https://doi.org/10.1016/j.ijhydene.2021.10.236.

34. . GOST 32144―2013. Ehlektricheskaya ehnergiya. Sovmestimost' tekhnicheskikh sredstv ehlektromagnitnaya. Normy kachestva ehlektricheskoi ehnergii v sistemakh ehlektrosnabzheniya obshchego naznacheniya. M.: Standartinform, 2014.


Review

For citations:


Loskutov A.B., Dar’enkov A.B., Lipuzhin I.A., Shalukho A.V., Bedretdinov R.Sh., Vanyaev V.V., Shakhov A.V. Development and research of operational efficiency of a hybrid energy system based on hydrogen fuel cell and energy storage for railway industry. Alternative Energy and Ecology (ISJAEE). 2023;(7):95-111. (In Russ.) https://doi.org/10.15518/isjaee.2023.07.095-111

Views: 158


ISSN 1608-8298 (Print)