

Обзор современных стратегий развития водородной биоэнергетики как ключевых направлений для достижения целей устойчивого развития
https://doi.org/10.15518/isjaee.2024.02.055-078
Аннотация
Водородная биоэнергетика представляет собой перспективное направление в области устойчивого развития, которое имеет потенциал стать ключевым компонентом энергетической системы будущего. В данной статье проведен обзор современных стратегий развития водородной биоэнергетики, исследуя их влияние на достижение целей устойчивого развития. Анализируя последние научные исследования, были рассмотрены потенциальные преимущества и вызовы, связанные с развитием данной отрасли, а также выявлены возможные пути для оптимизации стратегий развития водородной биоэнергетики. Целью работы являлось представление всестороннего обзора актуальных тенденций и перспектив данной области, способствующих развитию эффективных решений для достижения устойчивого развития.
Ключевые слова
Об авторах
К. А. ВельможинаРоссия
инженер в НИЛ «Промышленная экология»
195251, г. Санкт-Петербург, ул. Политехническая 29
+7 (999) 476-70-30
Н. А. Политаева
Россия
профессор Высшей школы гидротехнического и энергетического строительства
195251, г. Санкт-Петербург, ул. Политехническая 29
И. В. Ильин
Россия
директор Высшей школы бизнес-инжиниринга
195251, г. Санкт-Петербург, ул. Политехническая 29
П. С. Шинкевич
Россия
инженер в НИЛ «Промышленная экология»
195251, г. Санкт-Петербург, ул. Политехническая 29
Список литературы
1. . INTERNATIONAL ENERGY OUTLOOK 2023 – URL: https://www.eia.gov/outlooks/ieo/ (Дата обращения: 23.12.2023).
2. . Omar, Md & Hasanujzaman, Muhammad. (2023). The role of national culture in renewable energy consumption: Global evidence. Energy Reports. 10. 1765-1784. 10.1016/j.egyr.2023.08.033.
3. . Bayro-Kaiser, V.; Nelson, N. Microalgal hydrogen production: Prospects of an essential technology for a clean and sustainable energy economy. Photosynth. Res. 2017, 133, 49-62.
4. . Kanwal, Fariha & Torriero, Angel. (2022). Biohydrogen – A Green Fuel for Sustainable Energy Solutions. Energies. 15.7783.10.3390/en15207783.
5. . Norgate, T. E., Jahanshahi, S., Rankin, W. J., 2007. Assessing the environmental impact of metal production processes. J. Clean. Prod. 15 (8-9), 838-848. https://doi.org/10.1016/j.jclepro.2006.06.018.
6. . Norgate, Terry, Jahanshahi, Sharif, 2011. Reducing the greenhouse gas footprint of primary metal production: Where should the focus be? Miner. Eng. 24 (14), 1563-1570. https://doi.org/10.1016/j.mineng.2011.08.007.
7. . Rankin, W. John, 2011. Minerals, metals and sustainability: meeting future material needs. CSIRO Publishing. ISBN 0-643-09726-0.
8. . Sonter, Laura J., Dade, Marie C., Watson, James E.M., Valenta, Rick K., 2020. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11 (1), 4174. https://doi.org/10.1038/s41467-020-17928-5.
9. . Luckeneder, Sebastian, Giljum, Stefan, Schaffartzik, Anke, Maus, Victor, Tost, Michael, 2021. Surge in global metal mining threatens vulnerable ecosystems. Glob. Environ. Chang. 69 https://doi.org/10.1016/ j.gloenvcha.2021.102303.
10. . El Rasafi, Taoufik, Nouri, Mohamed, Haddioui, Abdelmajid, 2021. Metals in mine wastes: environmental pollution and soil remediation approaches – a review. Geosyst. Eng. 24 (3), 157-172. https://doi.org/10.1080/12269328.2017.1400474.
11. . Bardi, Ugo, 2014. Extracted: How the quest for mineral wealth is plundering the planet. Chelsea Green Publishing. ISBN 1-60358-541-9.
12. . Bhattacharya, M., Churchill, S. A., Paramati, S.R., 2017. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 111, 157-167.
13. . Duscha, V., Fougeyrollas, A., Nathani, C., Pfaff, M., Ragwitz, M., Resch, G., Walz, R. .., 2016. Renewable energy deployment in europe up to 2030 and the aim of a triple dividend. Energy Policy 95, 314-323.
14. . Thapar, S., Sharma, S., Verma, A., 2017. Local community as shareholders in clean energy projects: Innovative strategy for accelerating renewable energy deployment in India. Renew. Energy 101, 873–885.
15. . Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [16]. Tai, A.P.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014, 4, 817
16. . Morya, Raj & Raj, Tirath & Lee, Youngkyu & Pandey, Ashutosh & Kumar, Deepak & Singhania, Reeta & Singh, Saurabh & Verma, Jay & Kim, Sang-Hyoun. (2022). Recent updates in biohydrogen production strategies and life–cycle assessment for sustainable future. Bioresource Technology. 366. 128159. 10.1016/j.biortech.2022.128159.
17. . Corlett, R. T.; Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013, 28, 482-488.
18. . Franks, S. J.; Weber, J. J.; Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2014, 7, 123-139.
19. . Moritz, C.; Agudo, R. The future of species under climate change: Resilience or decline? Science 2013, 341, 504-508.
20. . Rogelj, Joeri, den Elzen, Michel, Hohne, Niklas, Fransen, Taryn, Fekete, Hanna, Winkler, Harald, Roberto Schaeffer, Fu, Sha, Keywan Riahi, Meinshausen, Malte, 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 0 C. Nature 534 (7609), 631-639. https://doi.org/10.1038/nature18307.
21. . Schleussner, Carl-Friedrich, Rogelj, Joeri, Schaeffer, Michiel, Lissner, Tabea, Licker, Rachel, Fischer, Erich M., Knutti, Reto, Levermann, Anders, Frieler, Katja, Hare, William, 2016. Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change 6 (9), 827-835. https://doi.org/10.1038/nclimate3096
22. . Masson-Delmotte, V., Zhai, P., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R., Zhou, B., 2021. Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press. Technical report.
23. . Smith, Christopher J., Forster, Piers M., Allen, Myles, Fuglestvedt, Jan, Millar, Richard J., Rogelj, Joeri, Zickfeld, Kirsten, 2019. 38 Current fossil fuel infrastructure does not yet commit us to 1,5 0 C warming. Nature Commun. 10 (1), 101. https://doi.org/10.1038/s41467-018-07999-w.
24. . Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energ Strat Rev 24:38-50
25. . Zheng H. Y., Song M. L., Shen Z. Y. (2021) The evolution of renewable energy and its impact on carbon reduction in China. Energy 237:121639
26. . Lanjekar, Pranay & Panwar, N. L. (2023). A Review on Hydrogen Production from Biomass and Commercialization Assessment Through Technology Readiness Levels (TRLs). BioEnergy Research. 1-20. 10.1007/s12155-023-10697-1.
27. . Chen W. -H., Chong C. T., Thomas S. et al. (2021) Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154:112322
28. . A. C. Lewis Optimising air quality co-benefits in a hydrogen economy: a case for hydrogen-specific standards for NO x emissions. Environ. Sc.: Atmos., 1 (2021), pp. 201-207.
29. . Vidadili, N.; Suleymanov, E.; Bulut, C.; Mahmudlu, C. Transition to renewable energy and sustainable energy development in azerbaijan. Renew. Sustain. Energy Rev. 2017, 80, 1153-1161. [31]. Kanwal, F.; Torriero, A. A. J. Biohydrogen – A Green Fuel for Sustainable Energy Solutions. Energies 2022, 15, 7783. https://doi.org/10.3390/en15207783
30. . Водород в энергетике : учеб. пособие / Р. В. Радченко, А. С. Мокрушин, В. В. Тюльпа. – Екатеринбург : Изд-во Урал. ун-та, 2014. – 229, [3] с.
31. . Alagumalai, Avinash & Devarajan, Balaji & Song, Hua & Wongwises, Somchai & Ledesma-Amaro, Rodrigo & Mahian, Omid & Sheremet, Mikhail & Lichtfouse, Eric. (2023). Machine learning in biohydrogen production: a review. Biofuel Research Journal. 10. 1844-1858. 10.18331/BRJ2023.10.2.4.
32. . Al-Dailami, Anas & Ahmad, Imran & Iwamoto, Koji & Abdullah, Norhayati & Yuzir, Ali. (2022). Feasibility and viability of procuring biohydrogen from microalgae: An emerging and sustainable energy resource technology. Journal of Physics: Conference Series. 2259. 10.1088/1742-6596/2259/1/012014.
33. . Kapdan, I. K., Kargi, F., 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38(5), 569-582.
34. . Lewis Oscar, F. L., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D., Nithya, C., 2016. Algal Nanoparticles: Synthesis and Biotechnological Potentials, in: Thajuddin, N., Dhanasekaran, D. (Eds.). – Intech Open, Rijeka, p. Ch. 7.
35. . Nagarajan, D., Lee, D.J., Kondo, A., Chang, J. S., 2017. Recent insights into biohydrogen production by microalgae-from biophotolysis to dark fermentation. Bioresour. Technol. 227, 373- 387.
36. . Show, K. Y., Yan, Y., Ling, M., Ye, G., Li, T., Lee, D. J., 2018. Hydrogen production from algal biomass-advances, challenges and prospects. Bioresour. Technol. 257, 290-300.
37. . Kumar, G., Mathimani, T., Rene, E. R., Pugazhendhi, A., 2019. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. Int. J. Hydrogen Energy. 44(26), 13106-13113. [40]. Dawood, F., Anda, M., and Shafiullah, G. M. (2020). Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energ. 45, 3847-3869. doi:10.1016/j.ijhydene.2019.12.059
38. . Nagarajan, D., Lee, D. -J., Kondo, A., and Chang, J. -S. (2017). Recent Insights into Biohydrogen Production by Microalgae – from Biophotolysis to Dark Fermentation. Bioresour. Tech. 227, 373-387. doi:10.1016/j.biortech.2016.12.104
39. . Abdalla, A. M., Hossain, S., Nisfindy, O. B., Azad, A. T., Dawood, M., and Azad, A. K. (2018). Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energ. Convers. Manage. 165, 602-627. doi:10.1016/j.enconman.2018.03.088
40. . Das, D., Khanna, N., and Dasgupta, C. N. (2019). Biohydrogen Production: Fundamentals and Technology Advances. Boca Raton: CRC Press.
41. . Ahmed, Shams & Rafa, Nazifa & Rahman, Md. Mofijur & Badruddin, Irfan & Inayat, Abrar & Ali, Md & Farrok, Omar & T. M., Yunus Khan. (2021). Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis. Frontiers in Energy Research. 10.3389/fenrg.2021.753878.
42. . Demirbas, A. Hydrogen-rich gas from fruit shells via supercritical water extraction. Int. J. Hydrog. Energy 2004, 29, 1237-1243.
43. . Pipitone, G.; Zoppi, G.; Pirone, R.; Bensaid, S. A critical review on catalyst design for aqueous phase reforming. Int. J. Hydrog. Energy 2022, 47, 151-180.
44. . Tak, S. S.; Shetye, O.; Muley, O.; Jaiswal, H.; Malik, S. N. Emerging technologies for hydrogen production from wastewater. Int. J. Hydrog. Energy 2022.
45. . Zoppi, G.; Pipitone, G.; Galletti, C.; Rizzo, A.M.; Chiaramonti, D.; Pirone, R.; Bensaid, S. Aqueous phase reforming of lignin-rich hydrothermal liquefaction by-products: A study on catalyst deactivation. Catal. Today 2021, 365, 206-213.
46. . Rahman, S.; Masdar, M.; Rosli, M.; Majlan, E.; Husaini, T.; Kamarudin, S.; Daud, W. Overview biohydrogen technologies and application in fuel cell technology. Renew. Sustain. Energy Rev. 2016, 66, 137–162.
47. . Torzillo, G.; Scoma, A.; Faraloni, C.; Giannelli, L. Advances in the biotechnology of hydrogen production with the microalga chlamydomonas reinhardtii. Crit. Rev. Biotechnol. 2015, 35, 485-496.
48. . Rumpel, S.; Siebel, J. F.; Farès, C.; Duan, J.; Reijerse, E.; Happe, T.; Lubitz, W.; Winkler, M. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem i to hydrogenase. Energy Environ. Sci. 2014, 7, 3296-3301.
49. . Osman, Ahmed & Lai, Zhi Ying & Farghali, Mohamed & Yiin, Chung Loong & Elgarahy, Ahmed & Hammad, Ahmed & Ihara, Ikko & Alfatesh, Ahmed & Rooney, David & Yap, Pow Seng. (2023). Optimizing biomass pathways to bioenergy and biochar application in electricity generation, biodiesel production, and biohydrogen production. Environmental Chemistry Letters. 10.1007/s10311-023-01613-2.
50. . Chen W. -H., Lin B. -J., Lin Y. -Y., Chu Y. -S., Ubando A. T, Show P. L., Ong H. C., Chang J. -S., Ho S. -H., Culaba A. B. (2021 b.) Progress in biomass torrefaction: principles, applications and challenges. Prog Energy Combust Sci 82:100887
51. . Mishra S., Upadhyay R. K. (2021). Review on biomass gasification: gasifiers, gasifying mediums, and operational parameters. Mater Sci Energy Technol 4:329-340
52. . Sajid M., Raheem A., Ullah N., Asim M., Rehman M. S. U., Ali N. (2022). Gasification of municipal solid waste: progress, challenges, and prospects. Renew Sustain Energy Rev 168:112815
53. . Li B., Mbeugang C. F. M., Huang Y., Liu D., Wang Q., Zhang S. J. E. (2022). A review of CaO based catalysts for tar removal during biomass gasification. Energy. https://doi.org/10.1016/j.energy.2022. 123172
54. . Bundhoo, M. Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrog. Energy 2016, 41, 6713–6733
55. . Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73-95.
56. . Liu, H.; Hu, H.; Chignell, J.; Fan, Y. Microbial electrolysis: Novel technology for hydrogen production from biomass. Biofuels 2010, 1, 129-142.
57. . Srivastava, R. K., Shetti, N. P., Reddy, K. R., Aminabhavi, T. M., 2020. Biofuels, biodiesel and biohydrogen production using bioprocesses. a review. Environ. Chem. Lett. 18, 1049-1072.
58. . Demirbas, A., 2009. Biofuels from agricultural biomass. Energy Sources, Part A. 31(17), 1573-1582.
59. . Kasiteropoulou, Dorothy & Metsoviti, M. & Papadopoulou, Katerina & Gougoulias, Nikolaos & Mpesios, Anastasios & Ntoufas, L. & Spiliotis, Xenofon & Papapolymerou, George. (2021). USE OF ANAEROBIC DIGESTRATE FROM BIOGAS PLANT EFFLUENTS AND GLYCEROL AS RAW MATERIALS FOR THE PRODUCTION OF BIOMASS AND BIOENERGY.
60. . Мировые тенденции в области получения энергии из биомассы / К. А. Мещерякова, Н. А. Политаева, А. М. Опарина, Н. В. Зибарев // Неделя науки ИСИ: Сборник материалов Всероссийской конференции, Санкт-Петербург, 03-09 апреля 2023 года / Печатается по решению Совета по издательской деятельности Ученого совета Санкт-Петербургского политехнического университета Петра Великого.. Том Часть 1. – Санкт-Петербург: Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого», 2023. – С. 251-253. – EDN ZNCMYW.
61. . Politaeva, Natalia & Smyatskaya, Yulia & Alafif, Rafat & Pfeifer, Christoph & Mukhametova, Liliya. (2020). Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes. Energies. 13. 2648.10.3390/en13102648.
62. . Rudras Baliga. Sustainable Algae Biodiesel Production in Cold Climates / Rudras Baliga, Susan E. Powers. // International Journal of Chemical Engineering. – 2010. – Vol.2010. Article ID 102179. – 13 p.
63. . Kothari, R.; Pandey, A. K.; Ahmad, S.; Kumar, A.; Pathak, V. V.; Tyagi, V. V. Microalgal cultivation for value-added products: A critical enviro-economical assessment. 3 Biotech 2017, 7, 243.
64. . Tao, J.; Ge, Y.; Liang, R.; Sun, Y.; Cheng, Z.; Yan, B.; Chen, G. Technologies integration towards bio-fuels production: A state-of-the-art review. Appl. Energy Combust. Sci. 2022, 10, 100070.
65. . Osman A. I., Chen L., Yang M., Msigwa G., Farghali M., Fawzy S., Rooney D. W., Yap P. -S. (2022a) Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environ Chem Lett 21:741–764. https://doi.org/10.1007/s10311-022-01532-8
66. . Osman A. I., Farghali M., Ihara I., Elgarahy A. M., Ayyad A., Mehta N., Ng K. H., Abd El-Monaem E. M., Eltaweil A. S., Hosny M., Hamed S. M., Fawzy S., Yap P. -S., Rooney D. W. (2023) Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environ Chem Lett 21:1419–1476. https://doi.org/10.1007/s10311-023-01573-7
67. . Sengmee D., Cheirsilp B., Suksaroge T. T., Prasertsan P. Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. Int J Hydrog Energy. 2017;42:1970–6. https://doi.org/10.1016/j.ijhydene.2016.10.089.
68. . Oncel S., Kose A. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol. 2014;151:265– 70. https://doi.org/10.1016/j.biortech.2013.10.076.
69. . Giannelli L., Torzillo G. Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy. 2012;37:16951–61. https://doi.org/10.1016/ j.ijhydene.2012.08.103.
70. . Velmozhina, K.; Shinkevich, P.; Zhazhkov, V.; Politaeva, N.; Korablev, V.; Vladimirov, I.; Morales, T. C. Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2 . Processes 2023, 11, 2978. https://doi.org/10.3390/pr11102978
71. . Иванова, П. В. Микроводоросли как источник альтернативного топлива / П. В. Иванова, А. А. Натальина. – Текст: непосредственный // Молодой ученый. – 2020. – № 22 (312). – С. 591-594.
72. . Borowiak, Daniel & Krzywonos, Małgorzata. (2022). Bioenergy, Biofuels, Lipids and Pigments – Research Trends in the Use of Microalgae Grown in Photobioreactors. Energies. 15. 5357. 10.3390/en15155357.
73. . Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., et al. (2021). Modern Developmental Aspects in the Field of Economical Harvesting and Biodiesel Production from Microalgae Biomass. Renew. Sust. Energ. Rev. 135, 110209. doi:10.1016/j.rser.2020.110209
74. . Pignolet, O.; Jubeau, S.; Vaca-Garcia, C.; Michaud, P. Highly valuable microalgae: Biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 2013, 40, 781-796.
75. . Вельможина, К. А. Применение микроводорослей Chlorella kessleri для интенсификации анаэробного сбраживания пищевых отходов / К. А. Вельможина, П. С. Шинкевич // Технологии переработки отходов с получением новой продукции: материалы IV Всероссийской научно-практической конференции с международным участием, Киров, 30 ноября 2022 года. – Киров: Вятский государственный университет, 2022. – С. 183-184. – EDN GQKYUA.
76. . Зибарев, Н. В. Получение биодизеля из микроводорослей путём переэтерификации биомассы / Н. В. Зибарев, Н. А. Политаева, Л. М. Молодкина // Бутлеровские сообщения. – 2023. – Т. 73, № 1. – С. 101-108. – DOI 10.37952/ROI-jbc-01/23-73-1-101. – EDN APBICH.
77. . Velmozhina, K.; Shinkevich, P.; Zhazhkov, V.; Politaeva, N.; Korablev, V.; Vladimirov, I.; Morales, T. C. Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2. Processes 2023, 11, 2978. https:// doi.org/10.3390/pr11102978
78. . Gaffron H, Rubin J. 1942 Fermentative and photochemical production of hydrogen in algae The Journal of General Physiology 26(2) 219-40.
79. . Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 35:8371–8384. https://doi.org/10.1016/j.ijhydene.2010.04.035
80. . Benemann, J. R. Hydrogen and methane production through microbial photosynthesis. In Living Systems as Energy Converters; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1977; pp. 285–298.
81. . Bhatia S. K., Jagtap S. S., Bedekar A. A., Bhatia R. K., Rajendran K., Pugazhendhi A., Rao C. V., Atabani A., Kumar G., Yang Y. –H. (2021) Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ 765:144429
82. . Saravanan A., Kumar P. S., Aron N. S., Jeevanantham S., Karishma S., Yaashikaa P., Chew K. W., Show P. L. (2022a) A review on bioconversion processes for hydrogen production from agroindustrial residues. Int J Hydrog Energy 47(88):37302–37320
83. . Benemann, J. Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol. 1996, 14, 1101-1103. [87]. Benemann, J. R. Hydrogen production by microalgae. J. Appl. Phycol. 2000, 12, 291-300.
84. . Nath, K.; Das, D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520-529.
85. . Huesemann, M. H.; Benemann, J. R. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp. In The Alga Dunaliella; CRC Press: London, UK, 2009; pp. 445-474.
86. . S. N. A. Rahman et al., Overview biohydrogen technologies and application in fuel cell technology, Renew. Sustain. Energy Rev. 66, 137-162 (2016)
87. . Melitos, George & Voulkopoulos, Xenofon Michail & Zabaniotou, Anastasia. (2021). Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis − A Systematic Review. Renewable Energy and Environmental Sustainability. 6. 45. 10.1051/rees/2021047.
88. . Sasikala K., Ramana C. V., Raghuveer Rao P. (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 16:597– 601. https://doi.org/10.1016/0360-3199(91)90082-T
89. . Barbosa M. J., Rocha JMS, Tramper J, Wijfels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25– 33. https://doi.org/10.1016/S0168-1656(00)00368-0
90. . Kothari R., Singh D. P., Tyagi V. V., Tyagi S. K. (2012) Fermentative hydrogen production – an alternative clean energy source. Renew Sustain Energy Rev 16:2337–2346. https://doi.org/10.1016/j.rser. 2012.01.002
91. . Sallam, E. R.; Khairy, H. M.; Elshobary, M.; Fetouh, H. A. Application of algae for hydrogen generation and utilization. In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment; El-Sheekh, M.M., Abdullah, N., Ahmad, I., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 354-378.
92. . Martínez, V. L.; Salierno, G. L.; García, R. E.; Lavorante, M. J.; Galvagno, M. A.; Cassanello, M. C. Biological Hydrogen Production by Dark Fermentation in a Stirred Tank Reactor and Its Correlation with the pH Time Evolution. Catalysts 2022, 12, 1366.
93. . Dincer I., Acar C. (2016) Review and evaluation of hydrogen production methods for better sustainability. International Scientifc Journal for Alternative Energy and Ecology (ISJAEE) 2495:14-36 https://doi.org/10.15518/isjaee.2016.11-12.014-036
94. . Ubando, A. T.; Chen, W. -H.; Hurt, D. A.; Conversion, A.; Rajendran, S.; Lin, S. -L. Biohydrogen in a circular bioeconomy: A critical review. Bioresour. Technol. 2022, 366, 128168.
95. . Jim´enez-Llanos, J., Ramírez-Carmona, M., Rendon-Castrill ´ on, ´ L., Ocampo-Lopez, ´ C., 2020. Sustainable biohydrogen production by Chlorella sp. microalgae: A review. Int. J. Hydrogen Energy 45, 8310-8328.
96. . Mishra P., Krishnan S., Rana S., Singh L., Sakinah M., Ab. Wahid Z. (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energ Strat Rev 24:27–37
97. . Brindhadevi K, Shanmuganathan R, Pugazhendhi A, Gunasekar P, Manigandan S (2021) Biohydrogen production using horizontal and vertical continuous stirred tank reactor-a numerical optimization. Int J Hydrog Energy 46(20):11305–11312
98. . Chen H., Wu J., Huang R., Zhang W., He W., Deng Z., Han Y., Xiao B., Luo H., Qu W. J. C. (2022a) Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chemosphere 286:131655
99. . Ziara R. M., Miller D. N., Subbiah J., Dvorak B. I. (2019) Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int J Hydrog Energy 44(2):661–673
100. . Gorgec FK, Karapinar I (2019) Biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated packed bed reactor: the effect of hydraulic retention time. Int J Hydrog Energy 44(1):136–143
101. . Rambabu K., Bharath G., Banat F., Hai A., Show P. L. (2021) Ferric oxide/date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohydrogen production. Int J Hydrog Energy 46(31):16631–16643
102. . Politaeva, N.; Ilin, I.; Velmozhina, K.; Shinkevich, P. Carbon Dioxide Utilization Using Chlorella microalgae. Environments 2023, 10, 109.
103. . Zibarev, N. V.; Politaeva, N. A.; Andrianova, M. Y. Use of Chlorella sorokiniana (Chlorellaceae, Chlorellales) Microalgae for Purification of Brewing-Industry Wastewaters. Biol. Bull. 2022, 49, 1776-1780.
104. . Zibarev, N. V.; Zhazhkov, V. V.; Andrianova, M. Y.; Politaeva, N. A. Integrated use of microalgae in wastewater treatment and waste recycling food industry. Ecol. Ind. Russ. 2021, 25, 18-23. [109]. Xia, A., Cheng, J., Ding, L., Lin, R., Huang, R., Zhou, J., Cen, K., 2013a. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis. Bioresour. Technol. 146, 436-443.
105. . Cheng, J., Liu, Y., Lin, R., Xia, A., Zhou, J., Cen, K., 2014. Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake. Int. J. Hydrogen Energy 39, 18793-18802.
106. . Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., Cen, K., 2013b. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour. Technol. 138, 204-213.
107. . Melitos, George & Voulkopoulos, Xenofon Michail & Zabaniotou, Anastasia. (2021). Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis − A Systematic Review. Renewable Energy and Environmental Sustainability. 6. 45. 10.1051/rees/2021047.
108. . S. Anto et al. Algae as green energy reserve: technological outlook on biofuel production, Chemosphere242, 125079 (2020)
109. . S. N. A. Rahman et al., Overview biohydrogen technologies and application in fuel cell technology, Renew. Sustain. Energy Rev. 66, 137-162 (2016)
110. . S. Mona et al. Green technology for sustainable biohydrogen production (waste to energy): a review, Sci. Total Environ. 728, 138481 (2020)
111. . Бозиева А. М., Заднепровская Е. В., Аллахвердиев С. И. Получение биоводорода: последние достижения и современное состояние // Глобальная энергия. – 2022. – Т. 28, № 4. – С. 59-78. DOI: https://doi.org/10.18721/JEST.28404
112. . Kadier, A., Kalil, M. S., Chandrasekhar, K., Mohanakrishna, G., Saratale, G. D., Saratale, R. G., et al. (2018). Surpassing the Current Limitations of High Purity H2 Production in Microbial Electrolysis Cell (MECs): Strategies for Inhibiting Growth of Methanogens. Bioelectrochemistry. Bioelectrochemistry 119, 211-219. doi:10.1016/j.bioelechem.2017.09.014
113. . El-Dalatony, M. M., Zheng, Y., Ji, M. -K., Li, X., and Salama, E. -S. (2020). Metabolic Pathways for Microalgal Biohydrogen Production: Current Progress and Future Prospectives. Bioresour. Tech. 318, 124253. doi:10.1016/j.biortech.2020.124253
114. . Марков С. А., Протасов Е. С., Быбин В. А., Стом Д. И. Получение водорода с помощью микроорганизмов и микробных топливных элементов на основе утилизации ингредиентов сточных вод и различных отходов // АЭЭ. 2013. – № 1-2 (118). [120]. Liu H., Grots S. and Logan B. Electrochemically Assisted microbial production of hydrogen from acetate // Environ. Sci. Technol. – 2005. – Vol. 39. – P. 4317-4320.
115. . Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew. Sustain. Energy Rev. – 2022, 156, 111991.
116. . Lee, H. -S.; Xin, W.; Katakojwala, R.; Mohan, S.V.; Tabish, N.M.D. Microbial electrolysis cells for the production of biohydrogen in dark fermentation – A review. Bioresour. Technol. 2022, 363, 127934.
117. . Mathews, J., Wang, G., 2009. Metabolic pathway engineering for enhanced biohydrogen production. Int. J. Hydrogen Energy 34, 7404-7416.
118. . Show, K.Y., Yan, Y., Ling, M., Ye, G., Li, T., Lee, D. J., 2018. Hydrogen production from algal biomass – advances, challenges and prospects. Bioresour. Technol. 257, 290-300.
119. . Chien, L. F., Kuo, T. T., Liu, B. H., Lin, H. D., Feng, T. Y., Huang, C. C., 2012. Solar-to-bio H2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int. J. Hydrogen Energy 37, 17738-17748.
120. . Oey, M., Sawyer, A. L., Ross, I. L., Hankamer, B., 2016. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J. 14, 1487-1499.
121. . Polle, J. E. W., Kanakagiri, S. D., Melis, A., 2003. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217, 49-59.
122. . Al-Dailami, Anas & Ahmad, Imran & Iwamoto, Koji & Abdullah, Norhayati & Yuzir, Ali. (2022). Feasibility and viability of procuring biohydrogen from microalgae: An emerging and sustainable energy resource technology. Journal of Physics: Conference Series. 2259. 10.1088/1742-6596/2259/1/012014.
123. . Karthik, Obuli & Goswami, Rahul Kumar & Verma, Pradeep. (2021). Advanced microalgae-based renewable biohydrogen production systems: A review. Bioresource Technology. 320. 124301. 10.1016/j.biortech.2020.124301.
124. . Садраддинова, Э. Р. Микробная переработка целлюлозосодержащего органического сырья в водород [Текст]: дис. … канд. биол. наук: 03.02.03, 03.01.06 / Э. Р. Садраддинова. – Москва, 2010. – 115 с.: ил. – Библиогр.: с. 83-115.
125. . Claassen, P. A. M., De Vrije, T. Non-thermal production of pure hydrogen from biomass: Hyvolution [Text] // International Journal of Hydrogen Energy. – 2006. – V. 31. – №. 11. – P. 1416-1423.
126. . Bechara, R., Azizi, F., and Boyadjian, C. (2021). Process simulation and optimization for enhanced biophotolytic hydrogen production from green algae using the sulfur deprivation method. Int. J. Hydrogen Energy 46, 14096–14108. https://doi.org/10.1016/ j.ijhydene.2021.01.115.
127. . Liu, H., Zhang, Z., Zhang, H., Lee, D. J., Zhang, Q., Lu, C., and He, C. (2020). Evaluation of hydrogen yield potential from Chlorella by photo-fermentation under diverse substrate concentration and enzyme loading. Bioresour. Technol. 303, 122956. https://doi.org/10.1016/j.biortech.2020. 122956.
128. . Anwar, M., Lou, S., Chen, L., Li, H., and Hu, Z. (2019). Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour. Technol. 292, 121972. https://doi.org/10. 1016/j.biortech.2019.121972
129. . Srivastava, N., Hussain, A., Kushwaha, D., Haque, S., Mishra, P., Gupta, V.K., and Srivastava, M. (2021). Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation. Fuel 304, 121391. https://doi.org/10.1016/ j.fuel.2021.121391.
130. . Rathi, B. & Kumar, P. & Rangasamy, Gayathri. (2023). A Short Review on Current Status and Obstacles in the Sustainable Production of Biohydrogen from Microalgal Species. Molecular Biotechnology. 1-9. 10.1007/s12033-023-00840-w.
131. . Bolatkhan, K., Kossalbayev, B. D., Zayadan, B. K., Tomo, T., Veziroglu, T. N., Allakhverdiev, S. I., 2019. Hydrogen production from phototrophic microorganisms: Reality and perspectives. Int. J. Hydrogen Energy 44, 5799-5811.
132. . Ghosh, R., Bhadury, P., Debnath, M., 2017. Characterization and screening of algal strains for sustainable biohydrogen production: primary constraints. In: Singh A., Rathore D. (Eds.), Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, pp. 115-146.
Рецензия
Для цитирования:
Вельможина К.А., Политаева Н.А., Ильин И.В., Шинкевич П.С. Обзор современных стратегий развития водородной биоэнергетики как ключевых направлений для достижения целей устойчивого развития. Альтернативная энергетика и экология (ISJAEE). 2024;(2):55-78. https://doi.org/10.15518/isjaee.2024.02.055-078
For citation:
Velmozhina K.A., Politaeva N.A., Ilin I.V., Shinkevich P.S. Review of modern strategies for the development of hydrogen bioenergy as key areas for achieving sustainable development goals. Alternative Energy and Ecology (ISJAEE). 2024;(2):55-78. (In Russ.) https://doi.org/10.15518/isjaee.2024.02.055-078