

DEVELOPMENT OF A NEURAL NETWORK CLASSIFIER OF BARRIERS TO THE MOVEMENT OF THE TRAIN
https://doi.org/10.15518/isjaee.2015.22.010
Abstract
This paper describes the obtained results on working-out and designing the efficient neural network classifier of barriers to the movement of the train. The developed neural network classifier is based on the original neural network related to a multilayer perceptron. The classifier registers and processes video and other information from the locomotive vision system.
About the Authors
Yu. S. BekhtinRussian Federation
DSc (engineering), leading researcher, Department of Information-Measuring Technology (IIT), National Research University “MPEI”
I. N. Zhelbakov
Russian Federation
DSc (engineering), Head of Department of Information-Measuring Technology (IIT), National Research University “MPEI”
P. G. Krug
Russian Federation
DSc (engineering), professor, Department of Information-Measuring Technology (IIT), National Research University “MPEI”
A. A. Lupachev
Russian Federation
PhD (engineering), associate professor, Department of Information-Measuring Technology (IIT), National Research University “MPEI”
S. A. Pavel'ev
Russian Federation
PhD (engineering), researcher, Department of Information-Measuring Technology (IIT), National Research University “MPEI”
References
1. Cheng-Chin Chiang, Ming-Che Ho, Hong-Sheng Liao, Andi Pratama, Wei-Cheng Syu. Detecting and re-cognizing traffic lights by genetic approximate ellipse detection and spatial texture layout. ICIC International, 2011/ ISSN 1349-4198. P. 6919–6934 (in Eng.).
2. Sokolov S.M., Boguslavky A.A. Intellectual Images Processing for a Realtime Recognition Problem. The 2nd Intern. Multi-Conf. on Complexity, Informatics and Cybernetics IMCIC 2011, Orlando, Florida, USA, March 27th-30th, 2011,Vol II, Pp/ 406–411 (in Eng.).
3. Ivanov Yu.A. Avtomatičeskaâ sistema predotvraŝeniâ stolknovenij lokomotiva, osnovannaâ na tehničeskom zrenii. Tehnika železnyh dorog, 2013, no. 1 (21), pp. 67–70 (Available at: http://www.doc-iva.narod2.TZD.pdf) (in Russ.).
4. Image Fusion: Algorithms and Applications. Ed. Tania Stathaki. Academic Press, 2008, pp. 519 (in Russ.).
5. GOST 24179-80. Svetofiltry, svetofiltrylinzy, linzy, rasseivateli i otklonâûŝie vstavki steklânnye dlâ signalnyh priborov železnodorožnogo transporta. Tehničeskie usloviâ (in Russ.).
6. Nilesh Y. Choudhary, Mrs. Rupal Patil, Dr. Umesh Bhadade and prof. Bhupendra M Chaudhari. Signature Recognition & Verification System Using Back Propagation Neural Network // International Journal of IT, Engineering and Applied Sciences Research (IJIEASR) 2013.Vol. 2, No. 1. P. 1–8.
7. Bekhtin Yu., Krug P., Lupachev A., Ostroukh A., Pavelyev S., Zhelbakov I. Identification of Barriers to the Movement of the Train // International Journal of Signal System Control and Engineering Application/ 2014. Vol. 7 (3). P. 52–60. (DOI: 10.3923/ijssceapp.2014.52.60.http://medwelljournals.co m/abstract/?doi=ijssceapp.2014.52.60).
8. Krug P., Ostroukh A., Morozova T., Kashkin E. and Ivanova I. Monitoring of Railroad Parts for the Presence of an Objects on the Rails // ARPN Journal of Engineering and Applied Sciences. ISSN 1819-6608. 2015. Vol. 10, No. 18. P. 7935–7940.
9. Bekhtin Yu., Krug P., Lupachev A., Zhelbakov I., Grout V. The classifying algorithms for train barriers recognition on the basis of image fusion methods and neural networks // Internet Technologies and Applications (ITA). 8–11 Sept. 2015. P. 266–270 (ISBN: 978-1-4799-8036-9. DOI: 10.1109/ITechA.2015.7317407).
Review
For citations:
Bekhtin Yu.S., Zhelbakov I.N., Krug P.G., Lupachev A.A., Pavel'ev S.A. DEVELOPMENT OF A NEURAL NETWORK CLASSIFIER OF BARRIERS TO THE MOVEMENT OF THE TRAIN. Alternative Energy and Ecology (ISJAEE). 2015;(22):84-94. (In Russ.) https://doi.org/10.15518/isjaee.2015.22.010