Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Водородные системы накопления энергии: сравнение приведенной стоимости хранения энергии LCOS различных систем. Водород как ключевая технология для длительного и сезонного накопления энергии

https://doi.org/10.15518/isjaee.2024.03.091-109

Аннотация

Основной задачей данной статьи является формирование современной оценки развития водородных систем хранения энергии и экономическая оценка эффективности их применения для различных задач. Используя данные из различных актуальных отчётов мировых аналитических агентств, построена математическая модель для определения показателя стоимости хранения электроэнергии – Levelised Cost of Storage (LCOS). С целью определения чувствительности показателя LCOS выведены зависимости стоимости хранения от: установленной мощности, энерговооруженности и стоимости электроэнергии. Согласно результатам моделирования определены оптимальные сценарные условия для систем водородного накопления, при которых стоимость хранения энергии для других систем многократно превышает стоимость хранения в водородной СНЭ. Исходя из полученных зависимостей LCOS от мощности и энерговооруженности, приводятся выводы об использовании водородных систем аккумулирования для длительного сезонного хранения энергии и энергетического арбитража в системах с ВИЭ.

Об авторах

О. В. Жданеев
Центр компетенций технологического развития ТЭК (ЦКТР ТЭК) при Минэнерго России; Институт нефтехимического синтеза им. А. В. Топчиева РАН (ИНХС РАН)
Россия

Жданеев Олег Валерьевич -  ведущий научный сотрудник,  Профессор высшей нефтяной школы, Югорский государственный университет

телефон: +7-985-857-32-27 

121099, Москва, Новинский бульвар, 13, с. 4 

119991, Москва, Ленинский проспект, 29 

 



А. В. Москвин
Русатом Комплексные Инжиниринговые Проекты
Россия

Москвин Антон Валерьевич 

115280, Москва, Ленинская Слобода, 26, с. 5 



Р. Р. Хакимов
Русатом Комплексные Инжиниринговые Проекты
Россия

Хакимов Ренат Рашидович 

 115280, Москва, Ленинская Слобода, 26, с. 5 



Список литературы

1. Galitskaya E., Khakimov R., Moskvin A., Zhdaneev O. Towards a new perspective on the efficiency of water electrolysis with anion-conducting matrix

2. Buchana, P.; Ustun, T.S. The role of microgrids & renewable energy in addressing Sub-Saharan Africa’s current and future energy needs. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24-26 March 2015; pp. 1-6.

3. Niyigena, D.; Habineza, C.; Ustun, T.S. Computer-based smart energy management system for rural health centers. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10-13 December 2015; pp. 1-5.

4. International Renewable Energy Agency. From Baseload to Peak: Renewables Provide a Reliable Solution. 2015. Available online: https://www.irena.org/publications/2015/Jun/From-Baseload-to-PeakRenewables-provide-a-reliable-solution (accessed on 9 October 2023).

5. Barik, A. K.; Das, D.; Latif, A.; Hussain, S.; Ustun, T. Optimal Voltage-Frequency Regulation in Distributed Sustainable Energy Based Hybrid Microgrids with Integrated Resource Planning. Energies 2021, 14, 2735.

6. International Renewable Energy Agency. Electricity Storage and Renewables: Costs and Markets to 2030. 2017. Available online: https://www.irena.org/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Sto age_Costs_20 17_Summary.pdf

7. Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strat. Rev. 2020, 31, 100539.

8. Ustun, T. S.; Hussain, S. M. S. Standardized communication model for home energy management system. IEEE Access 2020, 8, 180067-180075.

9. Huff, G., Currier, A. B., Kaun, B. C., Rastler, D. M., Chen, S. B., Bradshaw, D. T. & Gauntlett, W. D. (2013). DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Rep. Sand, 340.

10. Fitzgerald, G., Mandel, J., Morris, J., & Touati, H. (2015). The Economics of Battery Energy Storage: How multi-use, customer-sited batteries deliver the most services and value to customers and the grid. Rocky Mountain Institute, 6.

11. Everoze Partners Limited. (2016) Cracking the Code: A Guide to Energy Storage Revenue Strewams and How to Derisk Them. https://energyindemand.files.wordpress.com/2016/ 07/cracking-the-code.pdf.

12. Rastler, D. M. (2010). Electricity energy storage technology options: a white paper primer on applications, costs and benefits. Electric Power Research Institute.

13. Hesse HC, Schimpe M, Kucevic D, Jossen A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies. 2017; 10(12):2107. https://doi.org/10.3390/en10122107

14. Ralon, P., Taylor, M., Ilas, A., Diaz-Bone, H., & Kairies, K. (2017). Electricity storage and renewables: Costs and markets to 2030. International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 164.

15. Amiryar Mustafa E, Pullen Keith R. A review of flywheel energy storage system technologies and their applications. Appl Sci 2017; 7:286. https://doi.org/10.3390/app7030286

16. Wicki Samuel, Hansen Erik G. Clean energy storage technology in the making: an innovation systems perspective on flywheel energy storage. J Cleaner Prod 2017;162:1118-34. https://doi.org/10.1016/j.jclepro.2017.05.132. ISSN 0959- 6526.

17. Read MG, Smith RA, Pullen KR. Optimisation of flywheel energy storage systems with geared transmission for hybrid vehicles. MAMT 2015; 87:191-209. https://doi.org/10.1016/j.mechmachtheory.2014.11.001.

18. Rupp A, Baier H, Mertiny P, Secanell M. Analysis of a flywheel energy storage system for light rail transit. Energy 2016; 107:625-38. https://doi.org/10.1016/j. energy.2016.04.051.

19. Sebastián R, Peña Alzola R. Flywheel energy storage systems Review and simulation for an isolated wind power system. Renew Sust Energ Rev 2012; 16+:6803-13. https://doi.org/10.1016/j.rser.2012.08.008.

20. Abid Soomro, Mustafa E. Amiryar, Keith R. Pullen, Daniel Nankoo, Comparison of performance and controlling schemes of synchronous and induction machines used in flywheel energy storage systems, Energy Procedia. In: 3rd annual conference in energy storage and its applications, 3rd CDT-ESA-AC, 11-12 September 2018, Sheffield, UK.

21. Sebastián R, Peña Alzola R. Flywheel energy storage systems Review and simulation for an isolated wind power system. Renew Sust Energ Rev 2012; 16+:6803–13. https://doi.org/10.1016/j.rser.2012.08.008.

22. International Hydropower Association. 2022 Status report. Available online: https://www.hydropower.org/publications/2022-hydropower-status-report (accessed on 2nd of October 2023)

23. Ruiz, R. A.; de Vilder, L.; Prasasti, E.; Aouad, M.; De Luca, A.; Geisseler, B.; Terheiden, K.; Scanu, S.; Miccoli, A.; Roeber, V. et al. Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater. Renew. Sustain. Energy Rev. 2022, 160, 112281.

24. Chaudhary Priyanka, Rizwan M. Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system. Renew Energ 2018; 118:928-46. https://doi.org/10.1016/j. renene.2017.10.113.

25. Ma Tao, Yang Hongxing, Lu Lin, Peng Jinqing. Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization. Appl Energ 2015; 137:649-59. https://doi.org/10.1016/j.apenergy.2014.06. 005.

26. Alami Abdul Hai, Aokal Kamilia, Abed Jehad, Alhemyari Mohammad. Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications. Renew Energ 2017; 106: 201-11. https://doi.org/10.1016/j. renene.2017.01.002.

27. Jin He, Liu Pei, Li Zheng. Dynamic modeling and design of a hybrid compressed air energy storage and wind turbine system for wind power fluctuation reduction. Comput Chem Eng March 2019; 122(4):59-65. https://doi.org/10.1016/j. compchemeng.2018.05.023.

28. Omar Ramadan, Siddig Omer, Yate Ding, Hasila Jarimi, Xiangjie Chen, Saffa Riffat. Economic Evaluation of installation of standalone wind farm and Wind+CAES system for the new regulating tariffs for renewables in Egypt. Thermal Sci Eng Progress. Doi: 10.1016/j.tsep.2018.06.005.

29. Keshan, H.; Thornburg, J.; Ustun, T. S. Comparison of lead-acid and lithium-ion batteries for stationary storage in off-grid energy systems. In Proceedings of the 4th IET Clean Energy and Technology Conference (CEAT 2016), Kuala Lumpur, Malaysia, 14-15 November 2016.

30. Rodrigues, E.; Osório, G.; Godina, R.; Bizuayehu, A.; Lujano-Rojas, J.; Matias, J.; Catalão, J. Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island. Energy 2015, 90, 1606-1617.

31. Dustmann, C. -H. Advances in ZEBRA batteries. Journal of Power Sources. J. Power Sources 2004, 127, 85-92.

32. Ravikumar, M. K.; Rathod, S.; Jaiswal, N.; Patil, S.; Shukla, A. The renaissance in redox flow batteries. J. Solid State Electrochem. 2016, 21, 2467-2488.

33. Cavanagh, K.; Ward, J. K.; Behrens, S.; Bhatt, A. I.; Ratnam, E. L.; Oliver, E.; Hayward, J. Electrical Energy Storage: Technology Overview and Applications; CSIRO: Canberra, Australia, 2015; EP154168

34. Energy Storage Monitor: Latest trends in energy storage 2019. World Energy Council. Available online: ESM_Final_Report_05-Nov-2019.pdf (worldenergy.org) (accessed on 21st of November 2023).

35. LAZARD’S LEVELIZED COST OF STORAGE ANALYSIS – VERSION 7.0. Available online: Levelized Cost Of Energy, Levelized Cost Of Storage, and Levelized Cost Of Hydrogen 2021 | Lazard (accessed on 21st of November 2023)

36. Cost Projections for Utility-Scale Battery Storage: 2023 Update. Available online: Cost Projections for Utility-Scale Battery Storage: 2023 Update (nrel.gov) (accessed on 21st of November 2023)

37. Grid Energy Storage Technology Cost and Performance Assessment. U.S. Department of Energy Technical Report December 2020. Available online: https://www.pnnl.gov/sites/default/files/media/file/Hydrogen_Methodology.pdf (accessed on 21st of November 2023).

38. Manufacturing Cost Analysis of 100- and 250-kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications / DOE Contract No. DE-EE0005250

39. Elena Galitskaya, Oleg Zhdaneev. Development of electrolysis technologies for hydrogen production in the Russian Federation, 19 January 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1134198/v1

40. Steward D., Saur G., Penev M., Ramsden T. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage. Technical Report NREL/TP-560-46719. 2009.

41. S. Bazhenov, Yu. Dobrovolsky, A. Maximov, O. V. Zhdaneev, Key challenges for the development of the hydrogen industry in the Russian Federation, Sustainable Energy Technologies and Assessments, Volume 54, 2022, 102867, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102867

42. Elena Galitskaya, Oleg Zhdaneev. Development of electrolysis technologies for hydrogen production in the Russian Federation, 19 January 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1134198/v1


Рецензия

Для цитирования:


Жданеев О.В., Москвин А.В., Хакимов Р.Р. Водородные системы накопления энергии: сравнение приведенной стоимости хранения энергии LCOS различных систем. Водород как ключевая технология для длительного и сезонного накопления энергии. Альтернативная энергетика и экология (ISJAEE). 2024;(3):91-109. https://doi.org/10.15518/isjaee.2024.03.091-109

For citation:


Zhdaneev O.V., Moskvin A.V., Khakimov R.R. Hydrogen energy storage systems: сomparison of the leveled cost of LCOS energy storage of different systems. Hydrogen as a key technology for long-term and seasonal energy storage. Alternative Energy and Ecology (ISJAEE). 2024;(3):91-109. (In Russ.) https://doi.org/10.15518/isjaee.2024.03.091-109

Просмотров: 123


ISSN 1608-8298 (Print)