

Anaerobic digestion of pet food waste as a raw material source for producing hydrogen from methane
https://doi.org/10.15518/isjaee.2024.07.075-091
Abstract
A potential raw material for producing hydrogen (the main carrier for the accumulation, storage and transportation of energy) is methane from biogas. An approach to producing biogas with a high methane content (69-72%) from waste commercial dry and wet food for dogs and cats under mesophilic conditions has been demonstrated. For 27-28 days under anaerobic conditions, the degree of biotransformation of waste was 60-88%. As a result of mineralization of watered organic waste, the content of ammonium nitrogen and phosphorus in the form of phosphates amounted to 676-887 mg NH4 +/l and 77-160 mg PO4 3-/l, respectively. In anaerobically treated effluent, accumulation of sulfide ions up to 22 mg/l was observed. The solid sediment and anaerobically treated effluent (liquid fraction) obtained upon completion of the biotransformation of pet food waste are a potential organic fertilizer for agricultural needs, and methane from biogas is a raw material for producing hydrogen and pure carbon for the needs of the nanoindustry.
About the Authors
S. N. GaydamakaRussian Federation
Gaydamaka Sergey N., Faculty of Chemistry, Researcher of the Department of Chemical Enzymology, Candidate of Chemical Sciences
Researcher ID: ABB-4102-2020, Scopus Author ID: 8968522300
Leninskie Gory, 1, 119991, Moscow
M. A. Gladchenko
Russian Federation
Gladchenko Marina A., Faculty of Chemistry, Senior Researcher of the Department of Chemical Enzymology, Candidate of Technical Sciences
Researcher ID: K-2316-2015, Scopus Author ID: 6603312528
Leninskie Gory, 1, 119991, Moscow
I. V. Kornilov
Russian Federation
Kornilov Igor’ V., head of the Department of Scientific Research
Bolshye Kamenschiki str., 6, p. 1A, room 24, 115172, Moscow
M. N. Ryazanov
Russian Federation
Ryazanov Mikhail N., advisor
Bolshye Kamenschiki str., 6, p. 1A, room 24, 115172, Moscow
M. A. Gerasimov
Russian Federation
Gerasimov Maxim A., director
Bolshye Kamenschiki str., 6, p. 1A, room 24, 115172, Moscow
A. A. Kornilova
Russian Federation
Kornilova Al’bina A., Faculty of Physics, Senior Researcher of the Department of Solid State Physics, Candidate of Physical and Mathematical Sciences
Scopus Author ID: 7004498796
Leninskie Gory, 1, 119991, Moscow
References
1. Gladchenko M. A., Gaydamaka S. N., Kornilov V. I., Chernov V. V., Kornilova A. A. Anaerobic conversion of waste of alcohol production with animal and poultry waste into methane as a substrate for hydrogen production. Int J Hydrog Energy 2024;51(D):37-48. https://doi.org/10.1016/j.ijhydene.2023.06.311.
2. Gaydamaka S, Gladchenko M, Kornilov I, Ryazanov M., Gerasimov M., Kornilova A. Nitrocellulose-containing sediment as renewable resource for hydrogen and high-pure carbon production. Int J Hydrog Energy 2024; 51(D):62-78. https://doi.org/10.1016/j.ijhydene.2023.08.207.
3. Senko O., Gladchenko M., Maslova O., Efremenko E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts, 2019; 9(4):326. https://doi.org/10.3390/catal9040326.
4. Qian J. X., Chen T. W., Enakonda L. R., Liu D. B., Basset J. M., Zhou L. Methane decomposition to pure hydrogen and carbon nano materials: Stateof-the-art and future perspectives. Int J Hydrog Energy, 2020; 45(32):15721-43. https://doi.org/10.1016/j.ijhydene.2020.04.100.
5. Senko O., Gladchenko M., Maslova O., Efremenko E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts, 2019; 9(4):326. https://doi.org/10.3390/catal9040326.
6. Senko O., Maslova O., Gladchenko M., Gaydamaka S., Efremenko E. Biogas production from biomass of microalgae Chlorella vulgaris in the presence of benzothiophene sulfone. IOP Conf Ser: Mater Sci Eng, 2019; 525:012089. https://doi.org/10.1088/1757-899X/525/1/012089.
7. Maslova O., Senko O., Stepanov N., Gladchenko M., Gaydamaka S., Akopyan A., Polikarpova P., Lysenko S., Anisimov A., Efremenko E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. Bioresour Technol, 2021; 319:124248. https://doi.org/10.1016/j.biortech.2020.1242480.
8. Immobilized cells: biocatalysts and processes: monograph / Ed. by Doctor of Biological Sciences, Professor E. N. Efremenko. М.: RIOR, 2018. https://doi.org/10.29039/02004-3.
9. Hołda K., Głogowski R. Selected quality properties of lipid fraction and oxidative stability of dry dog foods under typical storage conditions. J Therm Anal Calorim, 2016; 126:91-6. https://doi.org/10.1007/s10973-016-5543-2.
10. Maia P. P., Pereira Bastos de Siqueira M. E. Occurrence of aflatoxins B 1, B 2, G 1 and G 2 in some Brazilian pet foods. Food Addit Contam, 2002; 19(12): 1180-3. https://doi.org/10.1080/0265203021000011214.
11. Morelli G., Catellani P., Miotti Scapin R., Bastianello S., Conficoni D., Contiero B., Ricci R. Evaluation of microbial contamination and effects of storage in raw meat-based dog foods purchased online. J Anim Physiol Anim Nutr, 2020; 104(2):690-7. https://doi.org/10.1111/jpn.13263.
12. Leiva A., Molina A., Redondo-Solano M., Artavia G., Rojas-Bogantes L., Granados-Chinchilla F. Pet food quality assurance and safety and quality assurance survey within the Costa Rican pet food industry. Animals, 2019; 9(11):980. https://doi.org/10.3390/ani9110980.
13. Frank B. Not for Human Consumption: How to Alleviate the Cruelty Plaguing the Pet Food Industry in the United States. Animal L. 2022; 28:1.
14. Efremenko, E., Senko, O., Maslova, O., Lyagin, I., Aslanli, A. and Stepanov, N., Destruction of mycotoxins in poultry waste under anaerobic conditions within methanogenesis catalyzed by artificial microbial consortia. Toxins, 2023; 15:205.
15. Xu F., Li Y. Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour Technol, 2012; 118:219-226. https://doi.org/10.1016/j.biortech.2012.04.102.
16. Patel S., Marzbali M. H., Hakeem I. G., Veluswamy G., Rathnayake N., Nahar K. et al. Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption. Waste Manage, 2023; 159,146-53. https://doi.org/10.1016/j.was-man.2023.01.037.
17. Gladchenko M. A., Kovalev D. A., Kovalev A. A., Litty Y. V., Nozhevnikova A. N. Methane production by anaerobic digestion of organic waste from vegetable processing facilities. Appl Biochem Microbiol, 2017; 53:242-9. https://doi.org/10.7868/S055510991702009X.
18. Dubber D., Gray N. F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J Environ Sci Health A Tox Hazard Subs. Environ Eng, 2010; 45:1595-600.
19. Kalyuzhnyi S., Gladchenko M., Starostina E., Shcherbakov S., Versprille A. Combined biological and physico-chemical treatment of baker’s yeast wastewater. Water Sci Technol, 2005; 52: 175e81. https://doi.org/10.2166/wst.2005.0514.
20. Trukhina I., Gladchenko M. A., Kalyuzhnyi S. V. Optimizations of sulfide and organic modifications of the DEAMOX process. Appl Biochem Microbiol, 2011; 47:841-5. https://doi.org/10.1134/S0003683811090067.
21. Senko O., Maslova O., Gladchenko M., Gaydamaka S., Akopyan A., Lysenko S., Karakhanov E., Efremenko E. Prospective approach to the anaerobic bioconversion of benzoand dibenzothiophene sulfones to sulfide. Molecules, 2019; 24:1736. https://doi.org/10.3390/molecules24091736.
22. Zhang H., Sun Z., Hu Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew Sustain Energy Rev, 2021; 149:111330. https://doi.org/10.1016/j.rser.2021.111330
23. Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time. Applied energy, 2015, 150, 9-14. https://doi.org/10.1016/j.apenergy.2015.01.146.
24. Ferrer, P.; Cambra-López, M.; Cerisuelo, A.; Peñaranda, D. S.; Moset, V. The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: Effect of substrate type and inclusion level. Waste Management, 2014, 34, 196-203. https://doi.org/10.1016/j.wasman.2013.10.010.
25. Marin-Batista, J.; Salazar, L.; Castro, L.; Escalante, H. Anaerobic co-digestion of vinasse and chicken manure: alternative for Colombian agrowaste management. Revista Colombiana de Biotecnología, 2016, 18, 6-12. http://dx.doi.org/10.15446/rev.colomb.biote.v18n2.53853.
26. Gusev A. L., Jabbarov T. G., Mamedov S. G., Malikov R., Hajibalaev N. M., Abdullaeva S. D., Abbasov N. M. Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production. Int J Hydrogen Energy, 2023; 48:14954e63. https://doi.org/10.1016/j.ijhydene.2022.12.341
27. Zhiznin S. Z., Shvets N. N., Timokhov V. M., Gusev A. L. Economics of hydrogen energy of green transition in the world and Russia. Part I. Int J Hydrogen Energy, 2023; 45:31353e66. https://doi.org/10.1016/j.ijhydene.2023.03.069.
Review
For citations:
Gaydamaka S.N., Gladchenko M.A., Kornilov I.V., Ryazanov M.N., Gerasimov M.A., Kornilova A.A. Anaerobic digestion of pet food waste as a raw material source for producing hydrogen from methane. Alternative Energy and Ecology (ISJAEE). 2024;(7):75-91. (In Russ.) https://doi.org/10.15518/isjaee.2024.07.075-091