

Optimization of two-stage thermophilic anaerobic digestion of dairy wastewater: effect of carrier material on process performance and microbial community
https://doi.org/10.15518/isjaee.2024.07.092-120
Abstract
Although two-stage anaerobic digestion (TSAD) is not a novel process, information of the process stability, microbial community and effective operating conditions is limited and often contradictory. In this work, the influence of different carrier materials (polyurethane foam, carbon felt, Raschig rings and a combination of carbon felt and Raschig rings) on the performance of the thermophilic TSAD of dairy wastewater was studied. The organic loading rate (OLR) in the acidogenic reactor (RH) was gradually increased from 13,74 to 32,56 g COD/(L∙d), and from 0,64 to 11,46 g COD/(L∙d) in the methanogenic reactors by correspondingly reducing the hydraulic retention time (HRT). The highest hydrogen production rate of 1280,3 ml/(L·d) and hydrogen yield of 93,2 ml/g COD were achieved at OLR of 13,74 g COD/(L·d), but hydrogen production stopped at higher OLR. The main soluble metabolites in RH were butyrate and lactate, and the microbial community was dominated by Streptococcus, Thermoanaerobacterium, Veillonellales- Selenomonadales and Pseudomonas. The highest methane production rate (2674 mL/(L·d) at HRT of 0,5 days) was observed in the reactor with polyurethane foam, while the highest methane yield (305,5 ml/g COD at HRT of 1,5 days) was obtained in a reactor containing carbon felt. Spirochaetaceae, Desulfomicrobium, Anaerolineaceae, Candidatus Caldatribacterium and Cloacimonadaceae W5 were linked to these materials and explained the highest methanogenic performance.
About the Authors
E. R. MikheevaRussian Federation
Elza R. Mikheeva, Researcher, Laboratory of Resource-Saving Biotechnology, Candidate of Biological Sciences
Researcher ID: L-8818-2016
603950, Nizhny Novgorod, Gagarina ave., 23
I. V. Katraeva
Russian Federation
Inna V. Katraeva, associate professor of the chair of water supply, sewage, engineering ecology and chemistry, candidate of technical sciences
Researcher ID: O-4715-2016
603950, Nizhny Novgorod, Gagarina ave., 23
603950, Nizhny Novgorod, St. Ilyinskaya, 65
A. A. Kovalev
Russian Federation
Andrey A. Kovalev, senior researcher of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences
Researcher ID: F-7045-2017, Scopus Author ID: 57205285134
109428, Moscow, 1st Institutskiy Proezd, 5
S. V. Shekhurdina
Russian Federation
Svetlana V. Shekhurdina, junior researcher of Laboratory of Microbiology of Anthropogenic Habitats
Researcher ID: JZW-4863-2024, Scopus Author ID: 57564192200
119071, Moscow, Leninskiy Pr-t, 33, 2
E. A. Zhuravleva
Russian Federation
Elena A. Zhuravleva, junior researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate. PhD student
Researcher ID: JBS-4297-2023, Scopus Author ID: 57216346570
119071, Moscow, Leninskiy Pr-t, 33, 2
A. A. Laikova
Russian Federation
Alexandra A. Laikova, junior researcher in Laboratory of Microbiology of Anthropogenic Habitats
Researcher ID: IVU-7977-2023, Scopus Author ID: 58044317600
119071, Moscow, Leninskiy Pr-t, 33, 2
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev, head of the laboratory of bioenergy and supercritical technologies, candidate of technical Sciences
Researcher ID: K-4810-2015
109428, Moscow, 1st Institutskiy Proezd, 5
Yu. V. Litti
Russian Federation
Yuriy V. Litti, Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences
Researcher ID: C-4945-2014, Scopus Author ID: 55251689800
119071, Moscow, Leninskiy Pr-t, 33, 2
References
1. Srisowmeya G., Chakravarthy M., Bakshi A., Devi G. N. Improving process stability, biogas production and energy recovery using two-stage mesophilic anaerobic codigestion of rice wastewater with cow dung slurry. Biomass Bioenergy, 2021, 152, 106184. https://doi.org/10.1016/j.biombioe.2021.106184.
2. Wang T., Wang J., Pu J., Bai C., Peng C., Shi H., Wu R., Xu Z., Zhang Y., Luo D., Yang L., Zhang Q. Comparison of Thermophilic-Mesophilic and Mesophilic-Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms, 2023, 11, 2409. https://doi.org/10.3390/micro-organisms11102409.
3. Paranjpe A., Saxena S., Jain P. Biogas yield using single and two stage anaerobic digestion: An experimental approach. Energy Sustain. Dev. – 2023, 74, 6-19. https://doi.org/10.1016/j.esd.2023.03.005.
4. Mishra P., Balachandar G., Das D. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manage. – 2017, 66, 70-78. https://doi.org/10.1016/j.wasman.2017.04.040.
5. Qin Y., Wu J., Xiao B., Cong M., Hojo T., Cheng J., Li Y. Y. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy, 2019, 179, 1235-1245. https://doi.org/10.1016/j.energy.2019.04.182.
6. Seengenyoung J., Mamimin C., Prasertsan P., Sompong O. Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int. J. Hydrog. Energy, 2019, 44, 3347-3355. https://doi.org/10.1016/j.ijhydene.2018.08.021.
7. Levin D. B., Chahine R. Challenges for renewable hydrogen production from biomass. Int. J. Hydrog. Energy, 2010, 35, 4962-4969. https://doi.org/10.1016/J.IJHYDENE.2009.08.067.
8. Yuan Y., Hu X., Chen H., Zhou Y., Zhou Y., Wang D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ, 2019, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741.
9. Pan H., Feng Q., Zhao Y., Li X., Zi H. Influence of Organic Loading Rate on Methane Production from Brewery Wastewater in Bioelectrochemical Anaerobic Digestion. Fermentation, 2023, 9, 932. https://doi.org/10.3390/fermentation9110932.
10. Wang S., Ma F., Ma W., Wang P., Zhao G., Lu X. Influence of temperature on biogas production efficiency and microbial community in a two-phase anaerobic digestion system. Water, 2019, 11, 133. https://doi.org/10.3390/w11010133.
11. Rademacher A., Nolte C., Schönberg M.,Klocke M. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Appl. Microbiol. Biotechnol. – 2012, 96, 565-576. https://doi.org/10.1007/s00253-012-4348-x.
12. Li W., Guo J., Cheng H., Wang W., Dong R. Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation. Appl. Energy, 2017, 189, 613-622. https://doi.org/10.1016/j.apenergy.2016.12.101.
13. Meng X., Yuan X., Ren J., Wang X., Zhu W., Cui Z. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses. Bioresour. Technol., 2017, 241, 1050- 1059. https://doi.org/10.1016/j.biortech.2017.05.181.
14. Sanz J. L., Rojas P., Morato A., Mendez L., Ballesteros M., González-Fernández C. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 2017, 168, 1013-1021. https://doi.org/10.1016/j.chemo-sphere.2016.10.109.
15. Moset V., Poulsen M., Wahid R., Højberg O., Møller H. B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb. Biotechnol. – 2015, 8, 787-800. https://doi.org/10.1111/1751-7915.12271.
16. Wang M., Wang Y., Peng J., Wang L., Yang J., Kou X., Chai B., Gao L., Han X. A comparative study on Mesophilic and thermophilic anaerobic digestion of different total solid content sludges produced in a long sludge-retention-time system. Results in Engineering, 2023, 19, 101228. https://doi.org/10.1016/j.rineng.2023.101228.
17. Sompong O., Hniman A., Prasertsan P., Imai T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int. J. Hydrog. Energy, 2011, 36, 3409-3416. https://doi.org/10.1016/j.ijhydene.2010.12.053.
18. Noike T., Mizuno O. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. – 2000, 42, 155-162. https://doi.org/10.2166/wst.2000.0261.
19. Sompong O., Prasertsan P., Intrasungkha N., Dhamwichukorn S., Birkeland N. K. Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. Int. J. Hydrog. Energy, 2008, 33, 1221-1231. https://doi.org/10.1016/j.ijhydene.2007.12.017.
20. Cheong D. Y., Hansen C. L. Feasibility of hydrogen production in thermophilic mixed fermentation by natural anaerobes. Bioresour. Technol. – 2007, 98, 2229- 2239. https://doi.org/10.1016/j.biortech.2006.09.039.
21. Cho S. K., Im W. T., Kim D. H., Kim M. H., Shin H. S., Oh S. E. Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis. Bioresour. Technol. – 2013, 131, 210-217. https://doi.org/10.1016/j.biortech.2012.12.100.
22. Khongkliang P., Kongjan P., Sompong O. Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Procedia, 2015, 79, 827-832. https://doi.org/10.1016/j.egypro.2015.11.573.
23. Chu C. F., Li Y. Y., Xu K. Q., Ebie Y., Inamori Y., Kong H. N. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy, 2008, 33, 4739-4746. https://doi.org/10.1016/j.ijhydene.2008.06.060.
24. Chookaew T., Sompong O., Prasertsan P. Fermentative production of hydrogen and soluble metabolites from crude glycerol of biodiesel plant by the newly isolated thermotolerant Klebsiella pneumoniae TR17. Int. J. Hydrog. Energy. – 2012, 37, 13314-13322. https://doi.org/10.1016/j.ijhydene.2012.06.022.
25. Pan J., Zhang R., El-Mashad H. M., Sun H., Ying Y. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int. J. Hydrog. Energy. – 2008, 33, 6968-6975. https://doi.org/10.1016/j.ijhydene.2008.07.130.
26. Kumar G., Buitrón, G. Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia. – 2017, 142, 743-748. https://doi.org/10.1016/j.egypro.2017.12.121.
27. Zhao C. Development of fixed-bed bioreactor for higher bio-hydrogen production. The Degree of Doctor of Philosophy in Biotechnology, the Graduate School of Life and Environmental Sciences, the University of Tsukuba, 2019.
28. Chang J. S., Lee K. S., Lin P. J. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Energy. – 2002, 27, 1167-1174. https://doi.org/10.1016/S0360-3199(02)00130-1.
29. Zheng H., Li D., Stanislaus M. S., Zhang N., Zhu Q., Hu X., Yang Y. Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chem. Eng. J. – 2015, 280, 106-114. https://doi.org/10.1016/j.cej.2015.06.024.
30. Hernández, E.S.; Rodriguez, X. Treatment of settled cattle-wastewaters by downflow anaerobic filter. Bioresour. Technol. 1992, 40, 77-79. https://doi.org/10.1016/0960-8524(92)90123-F.
31. Yang Y., Tada C., Miah M. S., Tsukahara K., Yagishita T., Sawayama S. Influence of bed materials on methanogenic characteristics and immobilized microbes in anaerobic digester. Mater. Sci. Eng. C. – 2004, 24, 413-419. https://doi.org/10.1016/j.msec.2003.11.005.
32. Yang Y., Tada C., Tsukahara K., Sawayama S. Methanogenic community and performance of fixed-and fluidized-bed reactors with reticular polyurethane foam with different pore sizes. Mater. Sci. Eng. C. – 2004, 24, 803-813. https://doi.org/10.1016/j.msec.2004.08.022.
33. Nozhevnikova A. N., Russkova Y. I., Litti Y. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology, 2020, 89, 129-147. https://doi.org/10.1134/S0026261720020101.
34. Baek G., Kim J., Kim J., Lee C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 2018, 11, 107. https://doi.org/10.3390/en11010107.
35. Gokfiliz P., Karapinar I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int. J. Hydrog. Energy, 2017, 42, 2553-2561. https://doi.org/10.1016/j.ijhydene.2016.03.041.
36. Escalante H., Castro L., Amaya M. P., Jaimes L., Jaimes-Estévez J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manage. – 2018, 71, 711-718. https://doi.org/10.1016/j.wasman.2017.09.026.
37. Bella K., Rao P. V. Anaerobic co-digestion of cheese whey and septage: Effect of substrate and inoculum on biogas production. J. Environ. Manage. – 2022, 308, 114581. https://doi.org/10.1016/j.jenvman.2022.114581.
38. Slavov A. K. General characteristics and treatment possibilities of dairy wastewater – a review. Food Technol. Biotechnol. – 2017, 55, 14. doi: 10.17113/ftb.55.01.17.4520.
39. Rincón-Catalán N. I., Pérez-Fabiel S., Mejía-González G., Herrera-López D., Castro-Chan R., Cruz-Salomón A., Sebastian P. J. Power generation from cheese whey treatment by anaerobic digestion and microbial fuel cell. Waste Biomass Valorization. – 2022, 13, 3221-3231. https://doi.org/10.1007/s12649-022-01720-1.
40. Fernández C., Cuetos M. J., Martínez E. J., Gómez X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy. – 2015, 81, 55-62. https://doi.org/10.1016/j.biombioe.2015.05.024.
41. Dębowski M., Zieliński M., Kisielewska M., Kazimierowicz J. Evaluation of anaerobic digestion of dairy wastewater in an innovative multi-section horizontal flow reactor. Energies. – 2020, 13, 2392. https://doi.org/10.3390/en13092392.
42. Kargi F., Eren N. S., Ozmihci S. Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. Int. J. Hydrog. Energy. – 2012, 37, 8338-8342. https://doi.org/10.1016/j.ijhydene.2012.02.162.
43. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Panchenko V., Fiore U., Litti Y. V. The start-up of continuous biohydrogen production from cheese whey: comparison of inoculum pretreatment methods and reactors with moving and fixed polyurethane carriers. Appl. Sci. – 2021, 11, 510. https://doi.org/10.3390/app11020510.
44. Mikheeva E. R., Katraeva I. V., Vorozhtsov D. L., Litti Y. V., Nozhevnikova A. N. Efficiency of two-phase anaerobic fermentation and the physicochemical properties of the organic fraction of municipal solid waste processed in a vortex-layer apparatus. Appl. Biochem. Microbiol. – 2020, 56, 736-742. https://doi.org/10.1134/S0003683820060113.
45. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A.V., Litti Y. V. Pretreatment in vortex layer apparatus boosts dark fermentative hydrogen production from cheese whey. Fermentation, 2022, 8, 674. https://doi.org/10.3390/fermentation8120674.
46. Fadrosh D. W., Ma B., Gajer P., Sengamalay N., Ott S., Brotman R. M., Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 1-7. https://doi.org/10.1186/2049-2618-2-6.
47. Gohl D., MacLean A., Hauge A., Becker A., Walek D., Beckman K. An optimized protocol for high-throughput amplicon-based microbiome profiling. Protoc. Exch. – 2016. https://doi.org/10.1038/protex.2016.030.
48. Menzel T., Neubauer P., Junne S. Role of microbial hydrolysis in anaerobic digestion. Energies, 2020, 13, 5555. https://doi.org/10.3390/en13215555.
49. Dyksma S., Jansen L., Gallert C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome, 2020, 8, 1-14. https://doi.org/10.1186/s40168-020-00862-5.
50. Lee J., Koo T., Yulisa A., Hwang S. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J. Environ. Manage. – 2019, 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038.
51. Cai C., Li L., Hua Y., Liu H., Dai X. Ferroferric oxide promotes metabolism in Anaerolineae other than microbial syntrophy in anaerobic methanogenesis of antibiotic fermentation residue. Sci. Total Environ. – 2021, 758, 143601. https://doi.org/10.1016/j.scitotenv.2020.143601.
52. Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. – 2009, 100, 3713-3717. https://doi.org/10.1016/j.biortech.2009.01.025.
53. Yang P., Zhang R., McGarvey J. A., Benemann J. R. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy, 2007, 32, 4761-4771. https://doi.org/10.1016/j.ijhydene.2007.07.038.
54. Ozyurt B., Hitit Z. Y., Ertunc S., Hapoglu H., Akay B., Demirtas G. F. Biological hydrogen production: effects of inoculation and production media. Int. J. Glob. Warm. – 2014, 6, 350-365. https://doi.org/10.1504/IJGW.2014.061036.
55. Ozyurt B., Soysal F., Hitit Z. Y., Camcioglu S., Akay B., Ertunc S. An efficient dark fermentative hydrogen production by GMV control of pH. Int. J. Hydrog.Energy, 2019, 44, 19709-19718. https://doi.org/10.1016/j.ijhydene.2019.06.048.
56. Penniston J., Gueguim Kana E. B. Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol. Biotechnol. Equip. – 2018, 32, 204-212. https://doi.org/10.1080/13102818.2017.1408430.
57. Ziara R. M., Miller D. N., Subbiah J., Dvorak B. I. Lactate wastewater dark fermentation: the effect of temperature and initial pH on biohydrogen production and microbial community. Int. J. Hydrog. Energy, 2019, 44, 661-673. https://doi.org/10.1016/j.ijhydene.2018.11.045.
58. Dareioti M. A., Vavouraki A. I., Tsigkou K., Zafiri C., Kornaros M. Dark fermentation of sweet sorghum stalks, cheese whey and cow manure mixture: Effect of pH, pretreatment and organic load. Processes, 2021, 9, 1017. https://doi.org/10.3390/pr9061017.
59. Gadhamshetty V., Johnson D. C., Nirmalakhandan N., Smith G. B., Deng S. Dark and acidic conditions for fermentative hydrogen production. Int. J. Hydrog. Energy, 2009, 34, 821-826. https://doi.org/10.1016/j.ijhydene.2008.11.040.
60. Jariyaboon R., Hayeeyunu S., Usmanbaha N., Ismail S. B., O-Thong S., Mamimin C., Kongjan P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 2023, 9, 636. https://doi.org/10.3390/fermentation9070636.
61. Zhang F., Chen Y., Dai K., Shen N., Zeng R. J. The glucose metabolic distribution in thermophilic (55°C) mixed culture fermentation: A chemostat study. Int. J. Hydrog. Energy, 2015, 40, 919-926. https://doi.org/10.1016/j.ijhydene.2014.11.098.
62. Rogers P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. – 1986, 31, 1-60. https://doi.org/10.1016/S0065-2164(08)70438-6.
63. Valdez-Vazquez I., Poggi-Varaldo H. M. Hydrogen production by fermentative consortia. Renew. Sust. Energ. Rev. – 2009, 13, 1000-1013. https://doi.org/10.1016/j.rser.2008.03.003.
64. Giuliano A., Zanetti L., Micolucci F., Cavinato C. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience. Water Sci. Technol. – 2014, 69, 2200-2209. https://doi.org/10.2166/wst.2014.137.
65. Guo X. M., Trably E., Latrille E., Carrère H., Steyer J. P. Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrog. Energy, 2010, 35, 10660-10673. https://doi.org/10.1016/j.ijhydene.2010.03.008.
66. Lindner J., Zielonka S., Oechsner H., Lemmer A. Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour. Technol. – 2016, 200, 470-476. https://doi.org/10.1016/j.biortech.2015.10.052.
67. Garcia-Aguirre J., Aymerich E., de González-Mtnez Goñi J., Esteban-Gutiérrez M. Selective VFA Production Potential from Organic Waste Streams: Assessing Temperature and PH Influence. Bioresour. Technol. – 2017, 244, 1081-1088. https://doi.org/10.1016/j.biortech.2017.07.187.
68. Fernández-Rodríguez J., Pérez M., Romero L. I. Semicontinuous Temperature-Phased Anaerobic Digestion (TPAD) of Organic Fraction of Municipal Solid Waste (OFMSW). Comparison with Single-Stage Processes. Chem. Eng. J. – 2016, 285, 409-416. https://doi.org/10.1016/j.cej.2015.10.027.
69. Litti Y. V., Potekhina M. A., Zhuravleva E. A., Vishnyakova A. V., Gruzdev D. S., Kovalev A. A., Kovalev D. A., Katraeva I. V., Parshina S. N. Dark fermentative hydrogen production from simple sugars and various wastewaters by a newly isolated Thermoanaerobacterium thermosaccharolyticum SP-H2. Int. J. Hydrog. Energy, 2022, 47, 24310-24327. https://doi.org/10.1016/j.ijhydene.2022.05.235.
70. Eng F., Fuess L. T., Bovio-Winkler P., Etchebehere C., Sakamoto I. K., Zaiat M. Optimization of volatile fatty acid production by sugarcane vinasse dark fermentation using a response surface methodology. Links between performance and microbial community composition. Sustain. Energy Technol. Assess. – 2022, 53, 102764. https://doi.org/10.1016/j.seta.2022.102764.
71. Couto P. T., Eng F., Bovio-Winkler P., Cavalcante W. A., Etchebehere C., Fuentes L., Nopens I., Zaiat M., Ribeiro R. Modeling of hydrogen and organic acid production using different concentrations of sugarcane vinasse under thermophilic conditions and a link with microbial community 16S rRNA gene sequencing data. J. Clean. Prod. – 2022, 370, 133437. https://doi.org/10.1016/j.jclepro.2022.133437.
72. Luo L., Sriram S., Johnravindar D., Martin T. L. P., Wong J. W., Pradhan N. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour. Technol. – 2022, 358, 127404. https://doi.org/10.1016/j.biortech.2022.127404.
73. Song Z. X., Dai Y., Fan Q. L., Li X. H., Fan Y. T., Hou H. W. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int. J. Hydrog. Energy, 2012, 37, 5631-5636. https://doi.org/10.1016/j.ijhydene.2012.01.010.
74. Sittijunda S., Baka S., Jariyaboon R., Reungsang A., Imai T., Kongjan P. Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 2022, 8, 537. https://doi.org/10.3390/fermentation8100537.
75. Bo Z., Wei-min C. A. I., Pin-Jing H. E. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J. Environ. Sci. – 2007, 19, 244-249.https://doi.org/10.1016/S1001-0742(07)60040-0.
76. Detman A., Mielecki D., Pleśniak Ł., Bucha M., Janiga M., Matyasik I., Chojnacka A., Jędrysek M. O., Błaszczyk M. K., Sikora A. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol. Biofuels, 2018, 11, 1-18. https://doi.org/10.1186/s13068-018-1106-z.
77. Yang K., Yu Y., Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. – 2003, 37, 2467-2477. https://doi.org/10.1016/S0043-1354(03)00006-X.
78. Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. – 1998, 32, 2707-2713. https://doi.org/10.1016/S0043-1354(98)00036-0.
79. Kovalev A. A., Mikheeva E. R., Panchenko V., Katraeva I. V., Kovalev D. A., Zhuravleva E. A., Litti Y. V. Optimization of Energy Production from Two-Stage Mesophilic-Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach. Energies, 2022, 15, 8928. https://doi.org/10.3390/en15238928.
80. Fink C., Beblawy S., Enkerlin A. M., Mühling L., Angenent L. T., Molitor B. A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen Methanothermobacter thermautotrophicus ΔH. MBio, 2021, 12, e02766-21. https://doi.org/10.1128/mBio.02766-21.
81. Gies E. A., Konwar K. M., Beatty J. T., Hallam S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. – 2014, 80, 6807-6818. https://doi.org/10.1128/AEM.01774-14.
82. Yi Y., Wang H., Chen Y., Gou M., Xia Z., Hu B., Nie Y., Tang Y. Identification of novel butyrate-and acetate-oxidizing bacteria in butyrate-fed mesophilic anaerobic chemostats by DNA-based stable isotope probing. Microb. Ecol. – 2020, 79, 285-298. https://doi.org/10.1007/s00248-019-01400-z.
83. Dyksma S., Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. Environ. Microbiol. Rep. – 2019, 11, 558-570. https://doi.org/10.1111/1758-2229.12759.
84. Serna-García R., Borrás L., Bouzas A., Seco A. Insights into the biological process performance and microbial diversity during thermophilic microalgae co-digestion in an anaerobic membrane bioreactor (AnMBR). Algal Res. – 2020, 50, 101981. https://doi.org/10.1016/j.algal.2020.101981.
85. Wang G., Li Q., Gao X., Wang X. C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. – 2018, 250, 812-820. https://doi.org/10.1016/j.biortech.2017.12.004.
86. Wang Z., Zhang C., Watson J., Sharma B. K., Si B., Zhang Y. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem. Eng. J. – 2022, 435, 135078. https://doi.org/10.1016/j.cej.2022.135078.
87. Kuroda K., Shinshima F., Tokunaga S., Noguchi T. Q., Yamauchi M., Nobu M. K., Narihiro T., Yamada M. Assessing the effect of green tuff as a novel natural inorganic carrier on methane-producing activity of an anaerobic sludge microbiome. Environ. Technol. Innov. – 2021, 24, 101835. https://doi.org/10.1016/j.eti.2021.101835
Review
For citations:
Mikheeva E.R., Katraeva I.V., Kovalev A.A., Shekhurdina S.V., Zhuravleva E.A., Laikova A.A., Kovalev D.A., Litti Yu.V. Optimization of two-stage thermophilic anaerobic digestion of dairy wastewater: effect of carrier material on process performance and microbial community. Alternative Energy and Ecology (ISJAEE). 2024;(7):92-120. (In Russ.) https://doi.org/10.15518/isjaee.2024.07.092-120