

Methodological approaches to assessment carbon footprint and certification low carbon hydrogen
https://doi.org/10.15518/isjaee.2024.07.183-208
Abstract
The article reviews existing approaches to low-carbon hydrogen certification and offers recommendations for their improvement based on an assessment of the carbon footprint across the entire life cycle. A comprehensive assessment of the carbon footprint of hydrogen produced from water and methane during steam reforming is presented. The assessment concluded that approximately 50% of hydrogen is produced from water, meets the requirements of low-carbon hydrogen(emission levels in the range of 4,2-4,5 kg CO2eq/kg H2) and can be considered for certification as renewable hydrogen. The results of estimating the carbon footprint of hydrogen from hydrogen sulfide demonstrate that for hydrogen sulfide conversion of methane and thermal decomposition of hydrogen sulfide, carbon dioxide emissions will be on the order of 1,842 and 2,244 kg CO2/kg H2, respectively. Taking into account associated emissions from natural gas production, the total greenhouse gas emissions for the processes under consideration are 4,649 and 6,129 kg CO2eq/kg H2, respectively, when using grid electricity. When using electricity from hydropower, the total greenhouse gas emissions from hydrogen production through hydrogen sulfide conversion of methane and thermal decomposition of hydrogen sulfide will be 2,33 and 2,78 kg CO2/kg H2, respectively, and for an alkaline electrolyzer they are about 2,60 kg CO2/kg H2. Thus, when using low-carbon sources of electricity to power processes, hydrogen sulfide technologies perform comparable to water electrolysis processes, and in some cases even show lower emissions.
Additionally, the impact of hydrogen leaks on the greenhouse effect is considered and analyzed, which allows us to conclude that hydrogen is an indirect greenhouse gas.
About the Authors
A. G. IshkovRussian Federation
Ishkov Alexander Gavrilovich, Professor of the UNESCO Department of Green Chemistry for Sustainable Development of the Russian University of Chemical Technology n. a. D. I. Mendeleev, Doctor of Chemistry
197229, St. Petersburg, ext. ter. Lakhta-Olgino municipal district, Lakhtinsky Ave., 2, building 3, building 1
O. V. Zhdaneev
Russian Federation
Zhdaneev Oleg Valerevich, Doctor of Technical Sciences, Leading Researcher Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (INHS RAS). Professor of the Higher Oil School
119991, GSP-1, Moscow, Leninsky Prospekt, 29, tel.: +7(495)955-42-01
K. V. Romanov
Russian Federation
Romanov Konstantin Vladimirovich, Candidate of Economic Sciences, Deputy Head of the Department Executive Secretary of the Coordination Committee of PJSC Gazprom for Rational Natural Resources Management, General Director
197229, St. Petersburg, ext. ter. Lakhta-Olgino municipal district, Lakhtinsky Ave., 2, building 3, building 1
142717, Moscow region, Razvilka village, st. Gazovikov, building 15, p. 1
E. A. Koloshkin
Russian Federation
Koloshkin Evgeny Alexandrovich, Chief Technologist, Scientific Secretary of Section No. 19 of the Scientific and Technical Council
197229, St. Petersburg, ext. ter. Lakhta-Olgino municipal district, Lakhtinsky Ave., 2, building 3, building 1
D. V. Kulikov
Russian Federation
Kulikov Danil Vladimirovich, advisor
142717, Moscow region, Razvilka village, st. Gazovikov, building 15, p. 1.
A. M. Mikhailov
Russian Federation
Mikhailov Andrey Mikhailovich, Ph. D., Deputy Head of the Center for Innovative Gas Chemical Technologies
Scopus ID: 55809144900
195112, St. Petersburg, ext. ter. Malaya Okhta municipal district,
Malookhtinsky Ave., 45, letter A, premises. 2-N, office 812
K. A. Dzhus
Russian Federation
Jus Kirill Andreevich, Ph. D., program manager at Science and Innovations – Nuclear Industry Scientific Development, Private Enterprise
Scopus ID: 57207157379, Author ID: 612068
119017, Moscow, st. Bolshaya Ordynka, 24th floor / room. 8 / 820
D. S. Lugvishchuk
Russian Federation
Lugvishchuk Dmitriy Sergeevich, Ph. D., Senior Researcher, Laboratory of Hydrogen Technologies, Center for Innovative Gas Chemical Technologie
195112, St. Petersburg, ext. ter. Malaya Okhta municipal district, Malookhtinsky Ave., 45, letter A, premises. 2-N, office 812
I. B. Bogdan
Russian Federation
Bogdan Irina Borisovna, Project Manager
142717, Moscow region, Razvilka village, st. Gazovikov, building 15, p. 1
E. V. Maslova
Russian Federation
Maslova Elena Vladimirovna, lead scientific consultant
142717, Moscow region, Razvilka village, st. Gazovikov, building 15, p. 1.
References
1. Ali S., Alkhatib I., AlHajaj A., Vega L. (2023). How sustainable and profitable are large-scale hydrogen production plants from CH4 and H2S? Journal of Cleaner Production, 428(20), 139475. Doi: 10.1016/j.jcle-pro.2023.139475
2. Bazhenov S., Dobrovolsky Yu., Maksimov A., Zhdaneev O. (2022). Key challenges for the development of the hydrogen industry in the Russian Federation. Sustainable Energy Technologies and Assessments. 54. 102867. 10.1016/j.seta.2022.102867.
3. Bhandari R., Trudewind C. A., Zap P. Life Cycle Assessment of Hydrogen Production Methods-A Review Contribution to Ely Grid Project.
4. Bockris, J. (2013, Февраль). The hydrogen economy: Its history. International Journal of Hydrogen Energy, 38(6), 2579-2588. Doi: 10.1016/j.ijhydene.2012.12.026
5. CertifHy. (2024). Retrieved Март 14, 2024, from certifhy.eu: https://www.certifhy.eu/
6. Cetinkaya E., Dincer I., Naterer G. (2012). Life cycle assessment of various hydrogen production methods. International journal of hydrogen energy, 37(3), 2071-2080. Doi: 10.1016/j.ijhydene.2011.10.064
7. Chan Y., Loy A., Cheah K., Chai S., Ngu L., How B., Lam, S. (2023). Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chemical Engineering Journal, 458, 141398. Doi: https://doi.org/10.1016/j.cej.2023.141398
8. Chivers T., Hyne J., Lau C. (1980). The thermal decomposition of hydrogen sulfide over transition metal sulfides. International Journal of Hydrogen Energy, 5(5), 499-506. Doi: https://doi.org/10.1016/0360-3199(80)90056-7
9. Chupin Evgeniy, Frolov Konstantin, Korzhavin Maxim, Zhdaneev Oleg. (2021). Energy storage systems for drilling rigs. Journal of Petroleum Exploration and Production Technology. 12. 10.1007/s13202-021-01248-5.
10. Department of Climate Change, Energy, the Environment and Water. (2023). Australia’s Guarantee of Origin Scheme: consultation papers. Retrieved Март 14, 2024, from consult.dcceew.gov.au: https://consult.dcceew.gov.au/aus-guarantee-of-origin-scheme-consulta-tion
11. Derwent R., Simmonds P., O’Doherty S., Manning A., Collins W., Stevenson D. (2006, Май). Global environmental impacts of the hydrogen economy. International Journal of Nuclear Hydrogen Production and Applications, 1(1), 57-67. doi:10.1504/IJNHPA.2006.009869
12. E4tech & LBST. (2021). Options for a UK low carbon hydrogen standard. Обзор. Retrieved from https://assets.publishing.service.gov.uk/media/616012f-ce90e071979dfebba/Options_for_a_UK_low_carbon_hydrogen_standard_report.pdf
13. El-Melih, A. M., Iovine, L., Al Shoaibi A. & Gupta A. K. (2017). Production of hydrogen from hydrogen sulfide in presence of methane. International Journal of Hydrogen Energy, 42(8), 4764-4773. doi: https://doi.org/10.1016/j.ijhydene.2016.11.096
14. Ernst & Young Limited. (2022). Low-Carbon Hydrogen International Standard Post-Workshop Report. Post-Workshop Repor, Asia-Pacific Economic Cooperation Secretariat, Singapore. Retrieved from https://www.apec.org/docs/default-source/publications/2022/7/low-carbon-hydrogen-international-standard-post-work-shop-report/222_scsc_low-carbon-hydrogen-internation-al-standard.pdf?sfvrsn=b6028b32_2
15. Galitskaya E. Development of electrolysis technologies for hydrogen production: A case study ofgreen steel manufacturing in the Russian Federation / E. Galitskaya, O. Zhdaneev // Environmental Technology and Innovation. – 2022. – Vol. 27. – P. 102517. – DOI 10.1016/j.eti.2022.102517. – EDN EYZKTG.
16. Galitskaya E., Khakimov R., Moskvin A., Zhdaneev O. (2023). Towards a new perspective on the efficiency of water electrolysis with anionconducting matrix. International Journal of Hydrogen Energy. 49. 10.1016/j.ijhydene.2023.10.339.
17. G7 Ministers of Climate, Energy and the Enviroment. (2023). G7 Climate, Energy and Environment Ministers’ Communiqué. Retrieved Март 14, 2024, from meti.go.jp: https://www.meti.go.jp/press/2023/04/20230417004/20230417004-1.pdf
18. Green Hydrogen Organisation (GH2). (2023). Green Hydrogen Standard. Retrieved Март 14, 2024, from gh2.org: https://gh2.org/sites/default/files/2023-01/GH2_Standard_A5_JAN%202023_1.pdf
19. Harvey A., Mountain R. (2017). Correlations for the Dielectric Constants of H2S, SO2, SF6. International Journal of Thermophysics, 38(10). doi: 10.1007/s10765-017-2279-6
20. Huang C., T-Raissi A. (2008). Liquid hydrogen production via hydrogen sulfide methane reformation. Journal of Power Sources, 175(1), 464-472. doi: 10.1016/j.jpowsour.2007.09.079
21. International Energy Agency. (2023). Global Hydrogen Review 2023. Обзор. Retrieved Март 14, 2024, from https://iea.blob.core.windows.net/assets/ecdf-c3bb-d212-4a4c-9ff7-6ce5b1e19cef/GlobalHydrogenRe-view2023.pdf
22. International Energy Agency. (2023). Towards hydrogen definitions based on their emissions intensity. Обзор, G7 2023 Hiroshima Summit. Retrieved from https://iea.blob.core.windows.net/assets/acc7a642-e42b-4972-8893-2f03bf0bfa03/Towardshydrogendefinitions-basedontheiremissionsintensity.pdf
23. IPHE, Hydrogen Council. (2023). Hydrogen Certification 101. Retrieved 03, 14, 2024, from iphe.net: https://www.iphe.net/_files/ugd/45185a_fe8631bbe2ad-496c9da93711935f7520.pdf
24. Khakimov R. Hydrogen as a key technology for long-term & seasonal energy storage applications / R. Khakimov, A. Moskvin, O. Zhdaneev // International Journal of Hydrogen Energy. – 2024. – Vol. 68. – P. 374-381. – DOI 10.1016/j.ijhydene.2024.04.066. – EDN IQQFIU
25. Li Y., Yu X., Guo Q., Dai Z., Yu G., Wang F. (2017). Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism. Energy Procedia, 142, 1065-1070. Doi: https://doi.org/10.1016/j.egypro.2017.12.357
26. Lim K., Yue Y., Gao X., Bella Zhang T. Hu F., Kawi S. (2023). Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry & Engineering, 11(13), 4903-4933. Doi: https://doi.org/10.1021/acssuschemeng.2c06515
27. Liu W., Wan Y., Xiong Y., Gao P. (2021). Green Hydrogen Standard in China: Standard and Evaluation of Low-Carbon Hydrogen, Clean Hydrogen, and Renewable Hydrogen. In Y. Li, H. Phoumin, S. Kimura, S. Kimura (Ed.). Hydrogen Sourced from Renewables and Clean Energy: A Feasibility Study of Achieving Large-scale Demonstration (pp. 211-24). Jakarta: ERIA Research Project Report. Retrieved from https://www.eria.org/uploads/media/Research-Project-Report/RPR-2021-19/15_Chapter-9-Green-Hydrogen-Standard-in-China_Standard-and-Evaluation-of-Low-Carbon-Hydro-gen%2C-Clean-Hydrogen%2C-and-Renewable-Hydro-gen.pdf
28. Martínez-Salazar A., Melo-Banda J., Coronel-García M., García-Vite P., Martínez-Salazar I., Domínguez-Esquivel J. (2019). Technoeconomic analysis of hydrogen production via hydrogen sulfide methane reformation. International Journal of Hydrogen Energy, 44(24), 12296-12302. Doi: https://doi.org/10.1016/j.ijhydene.2018.11.023
29. Martínez-Salazar A., Melo-Banda J., Reyes de la Torre A., Salazar-Cerda Y., Coronel-García M., Portales Martínez B., Silva Rodrigo R. (2015). Hydrogen production by methane reforming with H2S using Mo,Cr/ ZrO2–SBA15 and Mo,Cr/ZrO2–La2O3 catalysts. International Journal of Hydrogen Energy, 40(48), 17272-17283. Doi: https://doi.org/10.1016/j.ijhydene.2015.09.154
30. Ministry of Power, India. (2023). G20 Energy Ministers Adopt Ambitious and Forward-looking Outcome Document and Chair’s Summary. Retrieved Март 14, 2024, from pib.gov.in: https://pib.gov.in/PressRelea-seIframePage.aspx?PRID=1941796
31. Nagashima Ohno & Tsunematsu. (2023). The Japanese Basic Hydrogen Strategy. Retrieved Март 14, 2024, from noandt.com: https://www.noandt.com/wp-content/uploads/2023/06/japan_no40.pdf
32. Palma V., Cortese M., Renda S., Ruocco C., Martino M., Meloni E. (2020). A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. Nanomaterials, 10(8), 1596. Doi: https://doi.org/10.3390/nano10081596
33. Prinzhofer A., Cisse C., Diallo A. (2018, Октябрь). Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315-19326. doi:10.1016/j.ijhydene.2018.08.193
34. Spatolisano E., De Guido G., Pellegrini L., Calemma V., de Angelis A., Nali M. (2022). Hydrogen sulphide to hydrogen via H2S methane reformation: Thermodynamics and process scheme assessment. International Journal of Hydrogen Energy, 47(35), 15612-15623. Doi: https://doi.org/10.1016/j.ijhydene.2022.03.090
35. Startsev A. N. (2020). The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: Non-equilibrium thermodynamics of the irreversible process in an open system. 497, 11240. Doi: https://doi.org/10.1016/j.mcat.2020.111240
36. Svirchuk Y. S., Golikov A. N. (2016, Декабрь). Three-Phase Zvezda-Type Plasmatrons. IEEE Transactions on Plasma Science, 44(12), 3042-3047. doi:10.1109/TPS.2016.2571746
37. THE EUROPEAN COMMISSION. (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL,THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS A hydrogen strategy for a climate-neutral Europe. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX-%3A52020DC0301
38. THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1184. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1184&qid=1704969010792
39. THE EUROPEAN COMMISSION. (2023). COMMISSION DELEGATED REGULATION (EU) 2023/1185. Retrieved Март 14, 2024, from eur-lex.europa.eu: https://eur-lex.europa.eu/legal-content/EN/TX-T/?uri=CELEX%3A32023R1185
40. The UK’s Department for Energy Security & Net Zero. (2023). UK Low Carbon Hydrogen Standard. Стандарт, London. Retrieved from https://assets.publish-ing.service.gov.uk/media/6584407fed3c3400133bfd47/uk-low-carbon-hydrogen-standard-v3-december-2023.pdf
41. The United States Department of State and the United States Executive Office of the President. (2021). THE LONG-TERM STRATEGY OF THE UNITED STATES. Retrieved Март 14, 204, from whitehouse. gov: https://www.whitehouse.gov/wp-content/up-loads/2021/10/us-long-term-strategy.pdf
42. The US Department of Energy. (2023). U. S. Department of Energy Clean Hydrogen Production Standard (CHPS) Guidance. Retrieved Март 14, 2024, from hydrogen.energy.gov: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/clean-hydro-gen-production-standard-guidance.pdf
43. TÜV SÜD Industrie Service. (2021). ÜV SÜD Standard CMS 70 Production of green hydrogen (Green Hydrogen). Retrieved Март 14, 2024, from tuvsud.com: https://www.tuvsud.com/en/-/media/global/pdf-files/brochures-and-infosheets/tuvsud-cms70-standard-green-hydrogen-certification.pdf
44. Yang L., Wang S., Zhang Z., Lin K., Zheng M. (2023, Июнь 26). Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality. Sustainability, 15(13), 10118. doi:10.3390/su151310118
45. Zhdaneev O. V. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition / O. V. Zhdaneev, K. N. Frolov // International Journal of Hydrogen Energy. – 2024. – Vol. 58. – P. 1418-1428. – DOI: 10.1016/j.ijhydene.2024.01.285. – EDN PLLMKU.
46. Zhe Li, Hailong Du, Hui Xu, Yan Xiao, Lunhui Lu, Jinsong Guo, Yves Prairie, Sara Mercier-Blais, The carbon footprint of largeand mid-scale hydropower in China: Synthesis from five China’s largest hydroproject, Journal of Environmental Management, Volume 250, 2019.
47. Zgonnik V. (2020, Апрель). The occurrence and geoscience of natural hydrogen: A comprehensive review. Earth-Science Reviews, 203, 103140. Doi: 10.1016/j.earscirev.2020.103140
48. Аксютин О., Ишков А., Романов К., Тетеревлев Р. (Март 2021 г.). Роль российского природного газа в развитии водородной энергетики. Энергетическая политика. Получено из https://energypolicy.ru/o-aksyutin-a-ishkov-k-romanov-r-teterevlev-rol-rossijskogo-prirodnogo-gaza-v-razvitii-vodorodnoj-energetiki/gaz/2021/12/25/
49. Бахтина А. (2023). Открытие месторождения во Франции снизило скептицизм в отношении белого водорода. Получено 20 Июнь 2024 г. из Нефтегаз: https://neftegaz.ru/news/Geological-exploration/800617-otkrytie-mestorozhdeniya-vo-frantsii-snizilo-skeptitsizm-v-otnoshenii-belogo-vodoroda/
50. Бондур В. Г., Мохов И. И., Макоско А. А. (2022). Метан и климатические изменения: научные проблемы и технологические аспекты (изд. 1-е). (В. Г. Бондур, Ред.) Москва, Россия: Российская академия наук. Doi: 978-5-907036-54-3
51. Ишков А., Романов К., Колошкин Е., Удалов Д., Богдан И., Лугвищук Д., Михайлов А. (Апрель 2024 г.). Нормативное регулирование оценки углеродного следа при производстве водорода. Энергетическая политика, 195(4), 54-77. Doi:10.46920/2409-5516_2024_4195_54
52. Колшаков В. В., Ребров С. Г., Голиков А. Н., Федоров И. А. (2021). Ресурсные характеристики плазмотрона переменного тока «Звезда». Физика плазмы и плазменные методы (4), 32-39. Doi:10.51368/1996-0948-2021-4-32-39
53. Максимов А. Л., Ишков А. Г., Пименов А. А., Романов К. В., Михайлов А. М., Колошкин Е. А. (Февраль 2024 г.). Физико-химические аспекты и углеродный след получения водорода из воды и углеводородов. Записки горного института, 265, 87-94.
54. Нефтегаз 2025. (2024). Получено 20 Июнь 2024 г., из https://www.neftegaz-expo.ru/ru/articles/neft-rossii/
55. Савитенко М. А., Рыбаков Б. А. (Март 2021 г.). Применение водорода в энергетике: вопросы экологии. Турбины и Дизели, 94(1), 10-20.
56. Старцев, А. Н. (2017). Сероводород как источник получения водорода. Известия Академии наук. Серия химическая (8). Retrieved from http://start-sev-an.ru/wp-content/uploads/%D0%98%D0%B7%D0%B2%D0%90%D0%9D-17-%D0%A1%D1%82%D0%B0%D1%80%D1%86%D0%B5%D0%B2.pdf
57. Сывороткин В. (2013). Озонная методика изучения водородной дегазации Земли. Электронное научное издание Альманах Пространство и Время. – Т. 4. – Вып. 1.
58. Молчанов, В. И. (1981). Генерация водорода в литогенезе. Новосибирск: Наука.
59. Ehhalt D. H., Rohrer F. The tropospheric cycle of H2: A critical review // Tellus. 2009.
Review
For citations:
Ishkov A.G., Zhdaneev O.V., Romanov K.V., Koloshkin E.A., Kulikov D.V., Mikhailov A.M., Dzhus K.A., Lugvishchuk D.S., Bogdan I.B., Maslova E.V. Methodological approaches to assessment carbon footprint and certification low carbon hydrogen. Alternative Energy and Ecology (ISJAEE). 2024;(7):183-208. (In Russ.) https://doi.org/10.15518/isjaee.2024.07.183-208