

Generating energy from hydrogen-enriched biogas at low-power mini-thermal power plants
https://doi.org/10.15518/isjaee.2024.08.030-045
Abstract
The paper presents the results of a study of the possibility of using biogas enriched with hydrogen at a steam-turbine mini-thermal power plant with a capacity of 1 MW, in which the process of heat energy accumulation was organized. Two-stage biological conversion of organic waste was considered in the technological scheme as the basis for obtaining biohydrogen and biogas. Five compositions of gaseous fuels were analyzed in this paper. The biohydrogen content was varied in increments of 15% to 45%. When generating steam, a boiler with a capacity of 25 tons /hour was used; its calculation was key in the power generation unit. For fast recycling of waste with minimal hydraulic retention time, the most effective way is to use gas with a hydrogen content of up to 15%. At the same time, the daily processing of waste will be from 349,87 to 362,21 tons, and the excess of technical hydrogen of 99,99% purity can be realized in cylinders. The amount of organic fertilizers produced at the mini-TPP will be at least 241 tons /day. The efficiency of the steam boiler will be 95%. Resulting steam is sent to a 1 MW steam turbine to generate electricity. Although the smallest amount of flue gases is generated by burning fuel with a hydrogen content of 45% in a steam boiler, this is technologically impossible to implement in the scheme under consideration, since there is a shortage H2. It should be noted that the fuel consumption in a steam boiler increases as the proportion of hydrogen increases. Based on a comprehensive analysis, it can be argued that there are not enough standard methods for designing a steam-turbine mini-thermal power plant on hydrogen, and additional research is necessary.
Keywords
About the Authors
J. V. KaraevaRussian Federation
Julia V. Karaeva - Leading Researcher, laboratory of Energy Systems and Technologies, PhD.
420111, Kazan, st. Lobachevsky, 2/31, PO Box 190
Researcher ID F-6917-2017, Scopus Author ID 56856782800
S. S. Timofeeva
Russian Federation
Svetlana S. Timofeeva - Associate Professor of the Department of Power Engineering, PhD.
420066, Kazan, st. Krasnoselskaya, 51
Researcher ID AAZ-5531-2020, Scopus Author ID 56711352400
M. V. Savina
Russian Federation
Maria V. Savina - Associate Professor of the Department of Power Engineering, PhD.
420066, Kazan, st. Krasnoselskaya, 51
Scopus Author ID 26425221700
K. I. Sungatullin
Russian Federation
Kamil I. Sungatullin - Research Engineer, laboratory of Energy Systems and Technologies.
420111, Kazan, st. Lobachevsky, 2/31, PO Box 190
A. A. Kovalev
Russian Federation
Andrey A. Kovalev - Chief researcher of the laboratory of bioenergy technologies, PhD.
109428, Moscow, 1st Institutskiy Proezd, Building 5
Researcher ID F-7045-2017, Scopus Author ID 57205285134
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev - head of the laboratory of bioenergy and supercritical technologies, PhD.
109428, Moscow, 1st Institutskiy Proezd, Building 5
Researcher ID K-4810-2015
V. A. Panchenko
Russian Federation
Vladimir A. Panchenko – candidate of technical sciences, associate professor of the Department of the Russian University of Transport, senior researcher of the Laboratory of the Federal Scientific Agroengineering Center VIM.
127994, GSP-4, Moscow, st. Obraztsova, 9, Building 9
ResearcherID P-8127-2017, Scopus Author ID 57201922860, Web of Science Researcher ID AAE-1758-2019
Yu. V. Litti
Russian Federation
Yuriy V. Litti – Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences.
119071, Moscow, Leninsky Prospekt, 33, 2
Researcher ID C-4945-2014, Scopus Author ID 55251689800
References
1. Pomdaeng P., Kongthong O., Tseng C. -H., Dokmaingam P., Chu C. -Y. An immobilized mixed microflora approach to enhancing hydrogen and methane productions from high-strength organic loading food waste hydrolysate in series batch reactors // International Journal of Hydrogen Energy. 2024, vol. 52, part A, 160-169. https://doi.org/10.1016/j.ijhydene.2023.09.187
2. Valiullina A. I., Grachev A. N., Valeeva A. R., Bikbulatova G. M., Zabelkin S. A., Bashkirov V. N. The Use of Biopolyols Obtained from Liquid Birch Sawdust Pyrolysis Products as a Renewable Component in the Production of Rigid Polyurethane Foams // Polymer Science, Series D. 2022, vol. 15, 300-305. https://doi.org/10.1134/S1995421222020307
3. Valiullina A. I., Valeeva A. R., Zabelkin S. A., Grachev A. N., Bikbulatova G. M., Bashkirov V. N. Effect of molar ratios of phenol, formaldehyde, and catalyst on the properties of phenol-formaldehyde resin with partial replacement of synthetic phenol with depolymerized lignocellulose biomass // Biomass Conversion and Biorefinery. 2023, vol. 13, 12225-12233. https://doi.org/10.1007/s13399-021-02071-y
4. Karaeva J., Timofeeva S., Islamova S., Bulygina K., Aliev F., Panchenko V., Bolshev V. Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production // Agriculture. 2023, vol. 13, 260. https://doi.org/10.3390/agriculture13020260
5. Ruwa T. L., Abbasoglu S., Akun E. Energy and Exergy Analysis of Biogas-Powered Power Plant from Anaerobic Co-Digestion of Food and Animal Waste // Processes. 2022, vol. 10 (5), 871. https://doi.org/10.3390/pr10050871
6. Chettri D., Verma A. K., Ghosh S., Verma A. K. Biogas from lignocellulosic feedstock: current status and challenges // Environmental Science and Pollution Research. 2023. https://doi.org/10.1007/s11356-023-29805-x
7. Diamantis V., Eftaxias A., Stamatelatou K., Noutsopoulos C., Vlachokostas C., Aivasidis A. Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes // Renewable Energy. 2021, vol. 168, 438-447. https://doi.org/10.1016/j.renene.2020.12.034
8. Nadaleti W. C., Gomes J., de Souza E., Santos M., Belli P., Borges A., Mohedano R., Libardi N., R da Silva F. M., Correa E., Vieira B. Biomethane and biohydrogen production from an anaerobic sludge used in the treatment of rice parboiling effluent: Specific methanogenic and hydrogenic activity // International Journal of Hydrogen Energy. 2024, vol. 62, 702-710. https://doi.org/10.1016/j.ijhydene.2024.01.157
9. Pal D., Banerjee S., Chandra S., Das D., Pandit S., Roy A., Hasan M., Khandaker M. U., Alreshidi M. A. The generation of biohydrogen from pretreated algal biomass in batch fermentation mode // International Journal of Hydrogen Energy. 2024. https://doi.org/10.1016/j.ijhydene.2024.01.078
10. Ozen Da§ І. T., OzmihQi S., Buyukkamaci N. Environmental impact analysis of different wastes to biohydrogen, biogas and biohytane processes // International Journal of Hydrogen Energy. 2024, vol. 56, 1446-1463. https://doi.org/10.1016/j.ijhydene.2023.12.184
11. Nguyen T. -T., Ta D. -T., Lin C. -Y., Chu C. -Y., Ta T. -M. -N. Biohythane production from swine manure and pineapple waste in a single-stage two-chamber digester using gel-entrapped anaerobic microorganisms // International Journal of Hydrogen Energy. 2022, vol. 47, Is. 60, 25245-25255. https://doi.org/10.1016/j.ijhydene.2022.05.259
12. Kabir S. B., Khalekuzzaman Md., Hossain N., Jamal M., Alam Md. A., Abomohra A. E. -F. Progress in biohythane production from microalgae-wastewater sludge co-digestion: An integrated biorefinery approach // Biotechnology Advances. 2022, vol. 57, 107933. https://doi.org/10.1016/j.biotechadv.2022.107933
13. Sinsuw A. A. E., Chen T. -H., Dokmaingam P., Suriandjo H. S., Chu C. -Y. Life cycle assessment of environmental impacts for two-stage anaerobic biogas plant between commercial and pilot scales // International Journal of Hydrogen Energy. 2024, vol. 52, part A, 58-70. https://doi.org/10.1016/j.ijhydene.2023.06.331
14. Grzona M. V. D. P., Izurieta E. M., Adrover M. E., Borio D. O., Lopez E., Pedernera M. N. Design studies of a pure hydrogen production plant from biogas // International Journal of Hydrogen Energy. 2024, vol. 52, part B, 1-10. https://doi.org/10.1016/j.ijhydene.2023.07.202
15. Karaeva J. V., Khalitova G. R., Kovalev D. A., Trakhunova I. A. Study of the Process of Hydraulic Mixing in Anaerobic Digester of Biogas Plant // Chemical and Process Engineering. 2015, vol. 36, is. 1, 101-112. https://doi.org/10.1515/cpe-2015-0008
16. Chen H., Huang R., Wu J., Zhang W., Han Y., Xiao B., Wang D., Zhou Y., Liu B., Yu G. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure // Bioresource technology. 2021, vol. 320, part A, 124303. https://doi.org/10.1016/j.biortech.2020.124303
17. Wang T., Zhang H., Zhang Y., Wang H., Lyu J., Yue G. Efficiency and emissions of gas-fired industrial boiler fueled with hydrogen-enriched nature gas: A case study of 108 t/h steam boiler // International Journal of Hydrogen Energy. 2022, vol. 47, is. 65, 28188-28203. https://doi.org/10.1016/j.ijhydene.2022.06.121
18. O-Tong S., Mamimin C., Prasertsan P. Bio-hythane production from organic wastes by two-stage anaerobic fermentation technology. Advances in Biofuels and Bioenergy, 2018. https://doi.org/10.5772/inte-chopen.74392
19. Rawoof S. A. A., Kumar P. S., Vo D. -V. N., Devaraj T., Subramanian S. Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review // Renewable and Sustainable Energy Reviews. 2021, vol. 152, 111700. https://doi.org/10.1016/j.rser.2021.111700
20. Ruwa T. L., Abbasoglu S., Akun E. Energy and Exergy Analysis of Biogas-Powered Power Plant from Anaerobic Co-Digestion of Food and Animal Waste // Processes. 2022, vol. 10(5), 871. https://doi.org/10.3390/pr10050871
21. Kontokostas G., Goulos I. Techno-economic assessment of gas turbine cogeneration cycles utilizing anaerobic digestion products for biogas fuel // Journal of Engineering for Gas Turbines and Power. 2017, vol. 139, 011401. https://doi.org/10.1115/1.4034156
22. Bamisile O., Huang Q., Dagbasi M., Taiwo M., Adebayo V. Energy, exergy and environmental analyses of a biomass driven multi-generation system // International Journal of Exergy. 2020, vol. 31, No. 3, 249-267. https://doi.org/10.1504/IJEX.2020.106454
23. Hosseini S. E., Wahid M. A. Development of biogas combustion in combined heat and power generation // Renewable and Sustainable Energy Reviews. 2014, vol. 40, 868-875. https://doi.org/10.1016/j.rser.2014.07.204
24. Mohammadpour M., Houshfar E., Ashjaee M., Mohammadpour A. Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation // Energy. 2021, 119687. https://doi.org/10.1016/j.energy.2020.119687
25. Sung T., Kim S., Kim K. C. Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea // Applied Thermal Engineering. 2017, vol. 127, 963-974. https://doi.org/10.1016/j.applthermaleng.2017.08.106
26. Gholizadeh T., Vajdi M., Mohammadkhani F. Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas // Energy Conversion and Management. 2019, vol. 181, 463-475. https://doi.org/10.1016/j.enconman.2018.12.011
27. Al-Rashed A. A. A. A., Afrand M. Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion // Energy. 2021, vol. 223, 119997. https://doi.org/10.1016/j.energy.2021.119997
28. N. A., Laurensia R., Wijayanto D. S., Perdana V. L., Fasola M., Imran M., Saw L. H., Handogo R. Exergy Analysis of Boiler Process Powered by Biogas Fuel in Ethanol Production Plant: a Preliminary Analysis // Energy Procedia. 2017, vol. 142, 216-223. // https://doi.org/10.1016/j.egypro.2017.12.035
29. Sun M., Huang X., Zhao Y., Zhang P., Zhou Y. Design of a partially premixed burner for biogas-fired wall-mounted boiler // International Journal of Low-Carbon Technologies. 2021, Vol. 16, Is. 1, 212-219. https://doi.org/10.1093/ijlct/ctaa055
30. Buyukakin M. K., Oztuna S. Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and non-premixed burner system from flame structure and pollutants aspect // International Journal of Hydrogen Energy. 2020, vol. 45, is. 6, 35246-35256. https://doi.org/10.1016/j.ijhydene.2020.03.117
31. Bălănescu D. T., Homutescu V M. Effects of hydrogen-enriched methane combustion on latent heat recovery potential and environmental impact of condensing boilers // Applied Thermal Engineering. 2021, vol/ 197, 117411. https://doi.org/10.1016/j.applther-maleng.2021.117411
32. Gheshlaghi M. K. G., Tahsini A. M. Numerical investigation of hydrogen addition effects to a methane-fu-eled high-pressure combustion chamber // International Journal of Hydrogen Energy. 2023, vol. 48, is. 86, 3373233745. https://doi.org/10.1016/j.ijhydene.2023.05.119
33. Schiro F., Stoppato A., Benato A. Modelling and analyzing the impact of hydrogen enriched natural gas on domestic gas boilers in a decarbonization perspective // Carbon Resources Conversion. 2020, vol. 3, 122-129. https://doi.org/10.1016/j.crcon.2020.08.001
34. Giacomazzi E., Troiani G., Di Nardo A., Cal-chetti G., Cecere D., Messina G., Carpenella S. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition // Energies. 2023, vol. 16(20), 7174. https://doi.org/10.3390/en16207174
35. Marin G. E., Osipov B. M., Titov A. V., Akhmetshin A. R. Gas turbine operating as part of a thermal power plant with hydrogen storages // International Journal of Hydrogen Energy. 2023, vol. 48, is. 86, 3339333400. https://doi.org/10.1016/j.ijhydene.2023.05.109
36. Wegener M., Malmquist A., Isalgue A., Martin A. Biomass-fired combined cooling, heating and power for small scale applications - A review // Renewable and Sustainable Energy Reviews. 2018, vol. 96, 392-410. https://doi.org/10.1016/j.rser.2018.07.044
37. Mingaleeva G., Afanaseva O., Nguen D. T., Pham D. N., Zunino P. The Integration of Hybrid Mini Thermal Power Plants into the Energy Complex of the Republic of Vietnam // Energies. 2020, vol. 13(21), 5848. https://doi.org/10.3390/en13215848
38. Dubinin A. M., Shcheklein S. E. Mini coal-fired CHP plant on the basis of synthesis gas generator (CO + H2) and electrochemical current generator // International Journal of Hydrogen Energy. 2023, vol. 42, Is. 41, 26048-26058. https://doi.org/10.1016/j.ijhydene.2017.06.190
39. Karaeva J. V., Kamalov R. F., Kadiyrov A. I. Production of biogas from poultry waste using the biomass of plants from Amaranthaceae family // IOP Conference Series: Earth and Environmental Science. 2019, vol. 288, 012096. https://doi.org/10.1088/1755-1315/288/1/012096
40. Mariani A., Brequigny P., Masurier J. -B., Unich A., Minale M., Foucher F. Experimental Investigation on the Combustion of Biogas Containing Hydrogen in a HCCI Engine // 16th International Conference on Engines & Vehicles, SAE Italy, 2023, Capri, Italy. https://dx.doi.org/10.4271/2023-24-0056
41. Bui V. G., Bui T. M. T., Tran V. N., Huang Z., Hoang A. T., Tarelko W., Bui V. H., Pham X. M., Nguyen P. Q. P. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters // International Journal of Hydrogen Energy. 2023, vol. 48, is. 18, 6722-6737. https://doi.org/10.1016/j.ijhydene.2022.09.133
42. Novotny V From biogas-to hydrogen - Based integrated urban water, energy and waste solids system - Quest towards decarbonization // International Journal of Hydrogen Energy. 2022, vol. 47, Is. 19, 10508-10530. https://doi.org/10.1016/j.ijhydene.2022.01.085
43. Siberian Association of Power Engineering. Equipment catalog. Steam boiler https://saem.su/kata-log-produktsii/parovye_kotly_e-_dse-_ke-_de-_dkvr/parovye_kotly_de_4/6-5/10/16/25/parovoy_kotel_de-25-24gm-o-ye-25-2-4gm
44. Esterkin R. I. Industrial boiler systems (Leningrad: Energoatomizdat). 1985. - 400 p. (in Russian).
45. Haldar D., Bhattacharjee N., Shabbirahmed A. M., Anisha G. S., Patel A. K., Chang J. -S., Dong C. -D., Singhania R. R. Purification of biogas for methane enrichment using biomass-based adsorbents: A review // Biomass and Bioenergy. 2023, vol. 173, 106804. https://doi.org/10.1016/j.biombioe.2023.106804
46. Mohammadpour M., Ashjaee M., Houshfar E. Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments // Energy. 2022, vol. 261, part A, 125206. https://doi.org/10.1016/j.energy.2022.125206
47. Boulahlib M. S., Medaerts F., Boukhalfa M. A. Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion // International Journal of Hydrogen Energy. 2021, vol. 46, is. 75, 37628-37640. https://doi.org/10.1016/j.ijhydene.2021.01.103
48. Czekala W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions // Water. 2022, vol. 14, 4067. https://doi.org/10.3390/w14244067
49. Macedo W. N., Monteiro L.G., Corgozinhol.M., Macêdo E. N., Rendeiro G., Braga W., Bacha L. Biomass based microturbine system for electricity generation for isolated communities in amazon region // Renewable Energy. 2016, vol. 91, 323-333. https://doi.org/10.1016/j.renene.2016.01.063
50. Agonafer T. D., Eremed W. B., Adem K. D. Biogas-based trigeneration system: A review // Results in Engineering. 2022, vol. 15, 100509. https://doi.org/10.1016/j.rineng.2022.100509
Review
For citations:
Karaeva J.V., Timofeeva S.S., Savina M.V., Sungatullin K.I., Kovalev A.A., Kovalev D.A., Panchenko V.A., Litti Yu.V. Generating energy from hydrogen-enriched biogas at low-power mini-thermal power plants. Alternative Energy and Ecology (ISJAEE). 2024;(8):30-45. (In Russ.) https://doi.org/10.15518/isjaee.2024.08.030-045