Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Оn the issue of resistance to wind loads of vertical (faсade) photovoltaic plants

https://doi.org/10.15518/isjaee.2024.09.016-031

Abstract

The aim of the work is to assess the reliability of the fastening elements of the facade photovoltaic station (PVS) of the building of the Ural Power Engineering Institute.

To correctly simulate the operating mode of the façade photovoltaic system, real conditions were taken into account, such as the stochastic nature of solar radiation, ambient temperature throughout the year, façade orientation and position of the photovoltaic system modules, building proportions, wind effects, etc.

An assessment was made of wind velocity, standard wind pressure, and bearing capacity of the PV system fastening elements for the city of Yekaterinburg. The modeling of the bearing capacity of the engineering elements for fastening the PVS to the wall of the building was carried out in the LIRA-SAPR software package, which implements the finite element method in the form of displacements. The method made it possible to determine the forces in the anchors of fastening the FES elements from wind loads, the weight of the panels and their combinations at various wind speeds and directions.

It is shown that the load does not exceed the maximum loads on the fastening elements of PVS obtained on the basis of tests – the maximum load on the anchor is 21,84 kN.

Taking into account the bearing capacity of the anchors for fastening PVS panels on their own weight, shear and tearing under the combined action of loads, the maximum permissible wind speed is 60,9 m/sec, which is significantly higher than the wind speed values 60,9 m/sec observed at present and predicted in connection with climate change for the city of Yekaterinburg.

About the Authors

V. N. Alekhin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Alekhin Vladimir Nikolaevich, Candidate of Technical Sciences, Associate Professor of the Department of «Automated Design
Systems for Construction Objects» of the Construction Institute

Sverdlovsk region, Yekaterinburg, Mira st., 19



A. A. Antipin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Antipin Alexey Alexandrovich, Candidate of Technical Sciences,  Associate Professor of the Department of Computer-aided Design of Construction Facilities

Sverdlovsk region, Yekaterinburg, Mira st., 19



V. I. Velkin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Velkin Vladimir Ivanovic, doctor of technical sciences, Professor of the Department, Deputy head of the scientific laboratory «Euro-Asian center for renewable energy and energy saving»

Sverdlovsk region, Yekaterinburg, Mira st., 19



A. V. Matveev
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Matveev Andrei Valentinovich, Candidate of Technical Sciences, Associate Professor of the Department of Nuclear Power Plants and Renewable Energy Sources

Sverdlovsk region, Yekaterinburg, Mira st., 19



Yu. E. Nemikhin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Nemikhin Yurii Evgenievich, Physics teacher

Sverdlovsk region, Yekaterinburg, Mira st., 19



S. E. Shcheklein
Ural Federal University named after the first President of Russia B. N. Yeltsin
Russian Federation

Shcheklein Sergey Evgenievich, Professor, Doctor of Technical Sciences, Head of the Department of Nuclear Power Plants and Renewable Energy Sources

Sverdlovsk region, Yekaterinburg, Mira st., 19



References

1. . SP 131.13330.2012. Svod pravil. Stroitel`naya klimatologiya (s izmeneniem N 2). – E`lektronny`j resurs. – URL: https://www.ecosvc.ru/upload/iblock/81c/ivmnvi1ix0mt7ujjgso5hi1ukahodddv.pdf?ysclid=lr77qbjhm1541163510

2. . LIRA-SAPR. Kniga I. Osnovy`. E. B Strelecz– Streleczkij, A. V. Zhuravlev, R.Yu. Vodop`yanov. Pod red. Akademika RAASN, dokt. texn. nauk, prof. A. S. Gorodeczkogo. – Izdatel`stvo Liraland, 2019. – 154 p.

3. . Programmny`j kompleks LIRA-SAPR. Rukovodstvo pol`zovatelya. Obuchayushhie primery` / Romashkina M.A.,Titok V.P. Pod redakciej akademika RAASN Gorodeczkogo A. S. E`lektronnoe izdanie, 2018 g. – 254 p.

4. . SP 20.13330.2016. Svod pravil. Nagruzki i vozdejstviya. (Code of Practice. Loads and Impacts.) – E`lektronny`j resurs. URL: https://mchs.gov.ru/uploads/document/2022-03-15/079727a84b6dfc87f4f6c2db1a5693ed.pdf?ysclid=lr77ucqis8989140111

5. . Sinicza M. O., Komshin A. S. E`nergeticheskie ustanovki i texnologii //e`nergeticheskie ustanovki i texnologii. Uchrediteli: Federal`noe gosudarstvennoe avtonomnoe obrazovatel`noe uchrezhdenie vy`sshego obrazovaniya «Sevastopol`skij gosudarstvenny`j universitet». – 2023. – V. 9. – №. 3. – Pp. 63-72.

6. . Tilichkan A. A. Modelirovanie napryazhennodeformirovannogo sostoyaniya transformiruemoj konstrukcii. Aktuaotny`e nauchny`e issledovaniya v sovremennom mire. 9-1(65). – 2020. – Pp. 72-77.

7. . Cimmino M. C. et al. Composite solar faηades and wind generators with tensegrity architecture // Composites Part B: Engineering. – 2017. – V. 115. – Pp. 275-281.

8. . Vasel A., Iakovidis F. The effect of wind direction on the performance of solar PV plants // Energy Conversion and Management. – 2017. – V. 153. – Pp. 455-461.

9. . Valladares-Rendσn L. G., Schmid G., Lo S. L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of faηade shading systems // Energy and Buildings. – 2017. – V. 140. – Pp. 458-479.

10. . Matuska T., Sourek B. Faηade solar collectors // Solar Energy. – 2006. – V. 80. – No. 11. – Pp. 1443-1452.

11. . Gratia E., De Herde A. Optimal operation of a south double-skin facade // Energy and Buildings. – 2004. – V. 36. – No. 1. – Pp. 41-60.

12. . Powell D. et al. A reflective adaptive solar faηade for multi-building energy and comfort management // Energy and Buildings. – 2018. – V. 177. – Pp. 303-315.

13. . Eren O., Erturan B. Sustainable buildings with their sustainable facades // International Journal of Engineering and Technology. – 2013. – V. 5. – No. 6. – P. 725.

14. . Li M. et al. Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels //Applied Energy. – 2019. – V. 253. – P. 113509.

15. . Aschehoug Ψ., Bell D. BP SOLAR SKIN-a faηade concept for a sustainable future // SINTEF, Trondheim, STF22 A. – 2003. – V. 3510.

16. . Sathkumara T. M., [14]. Waidyasekara A. S., Victar H. The feasibility of transparent solar panels for high-rise building faηade in Sri Lanka // Construction Innovation. – 2023.

17. . Lotfabadi P. Solar considerations in high-rise buildings // Energy and Buildings. – 2015. – V. 89. – Pp. 183-195.

18. . Khedidja K., Wided B. R., Houcine B. Complete study of design and dimensioning of photovoltaic solar panels on the modern facade for office equipment in Bechar // SIENR Ghardaοa-Algeria October. – 2018. – Pp. 24-25.

19. . Visa I., Moldovan M., Duta A. Novel triangle flat plate solar thermal collector for facades integration // Renewable Energy. – 2019. – V. 143. – Pp. 252-262.

20. . Frattolillo A. et al. Potential for building faηadeintegrated solar thermal collectors in a highly urbanized context // Energies. – 2020. – V. 13. – No. 21. – P. 5801.

21. . Wang W. T., Yang H., Xiang C. Y. Green roofs and facades with integrated photovoltaic system for zero energy eco-friendly building – A review // Sustainable Energy Technologies and Assessments. – 2023. – V. 60. – P. 103426.

22. . Peng J. et al. Developing a method and simulation model for evaluating the overall energy performance of a ventilated semi-transparent photovoltaic double-skin facade // Progress in Photovoltaics: Research and Applications. – 2016. – V. 24. – No. 6. – Pp. 781-799.

23. . Alrashidi H. et al. Thermal performance evaluation and energy saving potential of semi-transparent CdTe in Faηade BIPV // Solar Energy. – 2022. – V. 232. – Pp. 84-91.

24. . Huang Y. C. et al. Analysis and monitoring results of a building integrated photovoltaic faηade using PV ceramic tiles in Taiwan // International Journal of Photoenergy. – 2014. – V. 2014. – No. 1. – P. 615860.

25. . Reker S., Schneider J., Gerhards C. Integration of vertical solar power plants into a future German energy system // Smart Energy. – 2022. – V. 7. – P. 100083.

26. . Riaz A. et al. A review on the application of photovoltaic thermal systems for building faηades // Building Services Engineering Research and Technology. – 2020. – V. 41. – No. 1. – Pp. 86-107.

27. . Elmalky A. M., Araji M. T. Computational fluid dynamics using finite volume method: A numerical model for Double Skin Faηades with renewable energy source in cold climates // Journal of Building Engineering. – 2022. – V. 60. – P. 105231.

28. . Visa I. et al. Facades integrated solar-thermal collectors-challenges and solutions // Energy Procedia. – 2017. – V. 112. – Pp. 176-185.

29. . Pawlak-Jakubowska A. Retractable roof module with photovoltaic panel as small solar power plant // Energy and Buildings. – 2023. – V. 288. – P. 112994.

30. . Corkish R., Prasad D. Integrated solar photovoltaics for buildings // Journal of Green Building. – 2006. – V. 1. – No. 2. – Pp. 63-76.

31. . Dehra H. An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system // Applied energy. – 2017. – V. 191. – Pp. 55-74.


Review

For citations:


Alekhin V.N., Antipin A.A., Velkin V.I., Matveev A.V., Nemikhin Yu.E., Shcheklein S.E. Оn the issue of resistance to wind loads of vertical (faсade) photovoltaic plants. Alternative Energy and Ecology (ISJAEE). 2024;(9):16-31. (In Russ.) https://doi.org/10.15518/isjaee.2024.09.016-031

Views: 175


ISSN 1608-8298 (Print)