Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of renewable and hydrogen energy in the Аrctic on the example of modernization of the energy system of the arctic settlement of Khatanga

https://doi.org/10.15518/isjaee.2024.09.111-130

Abstract

The primary objective of this article is to assess the application of modern technologies for energy supply of facilities located in the Arctic zone. The main focus is on carbon-free energy technologies, including an energy storage system based on the hydrogen cycle. Hydrogen storage systems allow for long-term seasonal energy storage cycles from renewable sources, the seasonality of which is more pronounced for Arctic regions.

At the moment, there is a sufficient number of works devoted to the use of various carbon-free technologies in Arctic conditions, but all of them are devoted to work on energy supply for narrow-profile facilities, usually Arctic stations.Therefore, the authors of this article decided to consider the use of the hydrogen cycle to provide a functioning Arctic settlement of Khatanga with a population of about 5 thousand people. This work will provide an economic assessment of the project for modernization of the energy system with the introduction of renewable sources, as well as hydrogen storage. Together with the assessment, an analysis of the sensitivity of the economic indicators of the project’s efficiency is provided depending on various conditions associated with the location of the system in the Arctic region.

About the Authors

O. V. Zhdaneev
Yugorsk State University; Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (IPS RAS); Russian Presidential Academy of National Economy and Public Administration
Russian Federation

Zhdaneev Oleg Valerievich, Leading Researcher;  Professor of the Higher Oil School; Advisor to the General Director/Senior Advisor to
the General Director of the Federal State Budgetary Institution «Russian Energy Agency» of the Ministry of Energy of the Russian Federation/ JSC «Center for Operational Services»

628012, Khanty-Mansiysk, Chekhova, 16

119991, Moscow, Leninsky Prospekt, 29

119571, Moscow, Vernadsky Prospekt, 82 s. 1



V. A. Karasevich
Engineering Center «Autonomous Energy» MIPT
Russian Federation

Karasevich Vladislav Aleksandrovich, PhD, Scientific Director of Delta P LLC, associated professor, Renewable Energy Department, Gubkin State Oil & Gas University; Researcher

124498, Zelenograd, Georgievsky pr-kt, 5, room 3a

 



A. V. Moskvin
Rusatom Complex Engineering Projects
Russian Federation

Moskvin Anton Valerievich,  Master’s degree

115280, Moscow, Leninskaya Sloboda, 26 p. 5 



R. R. Khakimov
Rusatom Complex Engineering Projects
Russian Federation

Khakimov Renat Rashidovich

115280, Moscow, Leninskaya Sloboda, 26 p. 5 



References

1. . Key challenges for the development of the hydrogen industry in the Russian Federation / S. Bazhenov, Yu. A. Dobrovolsky, A. Maximov, O. Zhdaneev // Sustainable Energy Technologies and Assessments. – 2022. – Vol. 54. – P. 102867. – DOI 10.1016/j.seta.2022.102867. – EDN VOYTLD.

2. . Zhdaneev O. V. Technological and institutional priorities of the oil and gas complex of the Russian Federation in the term of the world energy transition / O. V. Zhdaneev, K. N. Frolov // International Journal of Hydrogen Energy. – 2024. – Vol. 58. – P. 1418-1428. – DOI 10.1016/j.ijhydene.2024.01.285. – EDN PLLMKU.

3. . Andy Baker, Sea Water Heat Pump Project – Alaska SeaLife Center, Seward, AK, JCOS Forum – Juneau Library – April 11, 2013.

4. . Jinfu Zheng, Zhigang Zhou, Jianing Zhao, Songtao Hu, Jinda Wang, Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation. Applied Energy. – Volume 287. – 2021, 116536. – ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2021.116536.

5. . Hailong Li, Pietro Elia Campana, Yuting Tan, Jinyue Yan, Feasibility study about using a standalone wind power driven heat pump for space heating. Applied Energy. – Volume 228. – 2018. – Pages 14861498. – ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2018.06.146.

6. . Rabeb Toujani, Ridha Ben Iffa, Nahla Bouaziz, An improved cycle for heat pump application in hybrid-lift absorption/compression system integrated a wind energy and using organic fluid mixtures. Energy Procedia. – Volume 157, 2019. – Pages 1278-1284. – ISSN 18766102. https://doi.org/10.1016/j.egypro.2018.11.293.

7. . Wen-Long Cheng, Bing-Chuan Han, YongLe Nian, Bing-Bing Han. Theoretical analysis of a wind heating conversion and long distance transmission system, Energy Conversion and Management. – Volume 137, 2017. – Pages 21-33. – ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2017.01.021.

8. . X. Y. Sun, X. H. Zhong, C. Z. Wang, T. Zhou. Simulation research on distributed energy system based on coupling of PV/T unit and wind-to-heat unit // Solar Energy. – Volume 230, 2021. – Pages 843-858. – ISSN 0038092X. https://doi.org/10.1016/j.solener.2021.11.011.

9. . Gyeongmin Kim, Jin Hur. Probabilistic modeling of wind energy potential for power grid expansion planning // Energy. – Volume 230, 2021, 120831. – ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.120831.

10. . Xiaokang Peng, Zicheng Liu, Dong Jiang. A review of multiphase energy conversion in wind power generation // Renewable and Sustainable Energy Reviews. – Volume 147, 2021, 111172. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2021.111172.

11. . P. H. A. Barra, W. C. de Carvalho, T. S. Menezes, R. A. S. Fernandes, D. V. Coury. A review on wind power smoothing using high-power energy storage systems // Renewable and Sustainable Energy Reviews. – Volume 137, 2021, 110455. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2020.110455.

12. . Feng Song, Zichao Yu, Weiting Zhuang, Ao Lu. The institutional logic of wind energy integration: What can China learn from the United States to reduce wind curtailment? // Renewable and Sustainable Energy Reviews. – Volume 137, 2021, 110440. – ISSN 13640321. https://doi.org/10.1016/j.rser.2020.110440.

13. . OKB Mikron News. Available online: https://okbmikron.ru/news/v-ozhidanii-rezultata/ (accessed on 21st of May 2024)

14. . Sorabh Aggarwal, Raj Kumar, Daeho Lee, Sushil Kumar, Tej Singh. A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors // Heliyon. – Volume 9. – Issue 4,2023, e15185. – ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2023.e15185.

15. . Niccolò Aste, Claudio Del Pero, Fabrizio Leonforte, Thermal-electrical Optimization of the Configuration a Liquid PVT Collector // Energy Procedia. – Volume 30. – 2012. – Pages 1-7. – ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.11.002.

16. . M. Farshchimonfared, J. I. Bilbao, A. B. Sproul. Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings // Renewable Energy. – Volume 76. – 2015. – Pages 27-35. – ISSN 09601481. https://doi.org/10.1016/j.renene.2014.10.044.

17. . Poorya Ooshaksaraei, Kamaruzzaman Sopian, Saleem H. Zaidi, Rozli Zulkifli. Performance of four airbased photovoltaic thermal collectors configurations with bifacial solar cells // Renewable Energy. – Volume 102. – Part B. – 2017. – Pages 279-293. – ISSN 0960-1481. https://doi.org/10.1016/j.renene.2016.10.043.

18. . M. Farshchimonfared, J. I. Bilbao, A. B. Sproul. Full optimisation and sensitivity analysis of a photovoltaic-thermal (PV/T) air system linked to a typical residential building // Solar Energy. – Volume 136. – 2016. – Pages 15-22. – ISSN 0038-092X. https://doi.org/10.1016/j.solener.2016.06.048.

19. . Tania Urmee, Elaine Walker, Parisa A. Bahri, Garry Baverstock, Sina Rezvani, Wasim Saman. Solar water heaters uptake in Australia – Issues and barriers, Sustainable Energy Technologies and Assessments. – Volume 30. – 2018. – Pages 11-23. – ISSN 2213-1388. https://doi.org/10.1016/j.seta.2018.08.006.

20. . Ding Y., Riffat S. B. Thermochemical energy storage technologies for building applications: A state-ofthe-art review. Int. J. Low-Carbon Technol. 2013; 8:106116. doi: 10.1093/ijlct/cts004.

21. . Li G. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sustain. Energy Rev. 2016; 53:897-923. doi: 10.1016/j.rser.2015.09.006.

22. . Tao Y. B., He Y. L. A review of phase change material and performance enhancement method for latent heat storage system. Renew. Sustain. Energy Rev. 2018; 93:245-259. doi: 10.1016/j.rser.2018.05.028.

23. . Kousksou T., Bruel P., Jamil A., El Rhafiki T., Zeraouli Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells. 2014; 120:59-80. doi: 10.1016/j.solmat.2013.08.015.

24. . Kurpaska S., Latała H., Konopacki P. Storage of Heat Excess from a Plastic Tunnel in a Rock-Bed Accumulator: Tomato Yield and Energy Effects. Springer; Cham, Switzerland: 2018, pp. 549-560.

25. . Nahhas T., Py X., Sadiki N. Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renew. Sustain. Energy Rev. 2019; 110:226-235. doi: 10.1016/j.rser.2019.04.060.

26. . Gourdo L., Fatnassi H., Tiskatine R., Wifaya A., Demrati H., Aharoune A., Bouirden L. Solar energy storing rock-bed to heat an agricultural greenhouse. Energy. 2019; 169:206-212. doi: 10.1016/j.energy.2018.12.036.

27. . Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014; 65:67-123. doi: 10.1016/j.pmatsci.2014.03.005.

28. . Grey B. Thermal Energy Storage Companies. Available online: https://www.greyb.com/blog/thermal-energy-storage-companies/ (accessed on 21st of May 2024)

29. . New Atlas. Giant ‘sand battery’ holds a week’s heat for a whole town. Available online: https://newatlas.com/energy/sand-battery-finland/ (accessed on 21st of May 2024)

30. . Ministry of science and higher education of the Russian Federation. Thermal batteries for Arctic region. Available online: https://www.minobrnauki.gov.ru/press-center/news/nauka/27957/ (accessed on 21st of May 2024)

31. . Nordic and Baltic Sea Winter Power Balance 2022–2023, Available online: https://eepublicdownloads.entsoe.eu/clean-documents/SOC%20documents/Nordic/2022/Nordic_and_Baltic_Sea_Winter_Power_Balance_2022-2023_report.pdf (accessed on 21st of May 2024)

32. . A. B. Kanase-Patil, R. P. Saini, M. P. Sharma. Integrated renewable energy systems for off grid rural electrification of remote area // Renewable Energy, 35(6), 1342-1349 (2010)

33. . Iver Frimannslund, Thomas Thiis, Arne Aalberg, Bjørn Thorud. Polar solar power plants – Investigating the potential and the design challenges // Solar Energy. – Volume 224. – 2021. – Pages 35-42. – ISSN 0038092X. https://doi.org/10.1016/j.solener.2021.05.069.

34. . VDMA, ITRPV2020. «International technology roadmap for photovoltaic». Mechanical Engineering Industry Association, Frankfurt/Germany (2020).

35. . Mesude Bayrakci, Yosoon Choi, Jeffrey R. S. Brownson. Temperature Dependent Power Modeling of Photovoltaics // Energy Procedia. – Volume 57. – 2014. – Pages 745-754. – ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2014.10.282.

36. . X. Sun, M. Khan, C. Deline, M. Alam. Optimization and performance of bifacial solar modules: a global perspective // Appl. Energy. – 212 (2017), 10.1016/j.apenergy.2017.12.041.

37. . Wittmer B., Mermoud A., 2018. Yield Simulations for Horizontal Axis Trackers with Bifacial PV Modules in PVsyst. 35th European Photovoltaic Solar Energy Conference and Exhibition.

38. . R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, L. E. Shephard. Bifacial solar photovoltaics – A technology review // Renew. Sustain. Energy Rev., 60 (2016), pp. 1533-1549, 10.1016/j.rser.2016.03.041

39. . Schmid, A., Reise C., 2015. Realistic Yield Expectations for Bifacial PV Systems – An Assessment of Announced, Predicted and Observed Benefits. 31st European Photovoltaic Solar Energy Conference and Exhibition.

40. . R. Guerrero-Lemus, R. Vega, Taehyeon Kim, Amy Kimm, L. E. Shephard. Bifacial solar photovoltaics – A technology review // Renewable and Sustainable Energy Reviews. – Volume 60. – 2016. – Pages 1533-1549. – ISSN 1364-0321. https://doi.org/10.1016/j.rser.2016.03.041.

41. . NASA POWER | Prediction оf Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 21st of May 2024)

42. . Korzhavin, K. Frolov, O. Zhdaneev // Journal of Petroleum Exploration and Production Technology. – 2021. – DOI 10.1007/s13202-021-01248-5. – EDN KOQJEC.

43. . Aprea J. L. Two years experience in hydrogen production and use in Hope bay, Antarctica // International Journal of Hydrogen Energy. – 2012, 37. – Р. 14773-14780.

44. . Galitskaya E. Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation / E. Galitskaya, O. Zhdaneev // Environmental Technology and Innovation. – 2022. – Vol. 27. – P. 102517. – DOI 10.1016/j.eti.2022.102517. – EDN EYZKTG.

45. . Hatanga’s energy supply company. Electricity rates. Available online: https://xn----8sbaaldjz6bg1a2a1b7g9a.xn--p1ai/page/34692 (accessed on 21st of May 2024)

46. . Alyssa Pantaleo, Mary R. Albert, Hunter T. Snyder, Stephen Doig, Toku Oshima, Niels Erik Hagelqvist. Modeling a sustainable energy transition in northern Greenland: Qaanaaq case study // Sustainable Energy Technologies and Assessments. – Volume 54. – 2022, 102774. – ISSN 2213-1388. https://doi.org/10.1016/j.seta.2022.102774.

47. . E. Galitskaya, R. Khakimov, A. Moskvin, O. Zhdaneev. Towards a new perspective on the efficiency of water electrolysis with anion-conducting matrix // International Journal of Hydrogen Energy. – Volume 49. – Part A. – 2024. – Pages 1577-1583. – ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2023.10.339.

48. . R. Khakimov, A. Moskvin, O. Zhdaneev. Hydrogen as a key technology for long-term & seasonal energy storage applications // International Journal of Hydrogen Energy. – Volume 68, 28 May 2024. – Pages 374-381. https://doi.org/10.1016/j.ijhydene.2024.04.066.

49. . Yan Cun & Hu Rui. (2013). Study on Common Fault of Wind Turbine. Applied Mechanics and Materials. 397-400. 1133-1136. 10.4028/www.scientific.net/AMM.397-400.1133.


Review

For citations:


Zhdaneev O.V., Karasevich V.A., Moskvin A.V., Khakimov R.R. Application of renewable and hydrogen energy in the Аrctic on the example of modernization of the energy system of the arctic settlement of Khatanga. Alternative Energy and Ecology (ISJAEE). 2024;(9):111-130. (In Russ.) https://doi.org/10.15518/isjaee.2024.09.111-130

Views: 157


ISSN 1608-8298 (Print)