Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Агривольтаика и зелёный водород – симбиоз технологий солнечной энергетики для устойчивого развития человечества

https://doi.org/10.15518/isjaee.2024.10.019-044

Аннотация

В статье представлен обзор исследований агривольтаических систем на основе различных типов фотоэлектрических модулей, которые имеют значительный потенциал для производства и использования зелёного водорода. Рассмотрены предпосылки для активного и эффективного внедрения агривольтаики и зелёного водорода в современном мире, описаны успешные примеры использования фотоэлектрических преобразователей в сельском хозяйстве и производстве зелёного водорода, представлена классификация агривольтаических систем. Показаны основные достоинства и недостатки использования фотоэлектрических модулей в сельском хозяйстве на примерах открытых, тепличных и закрытых агривольтаических систем. Представлены современные сельскохозяйственные машины и автономные роботы, которые применяются в агривольтаических системах, а также обоснована целесообразность использования зелёного водорода в таких устройствах.

Об авторах

В. А. Панченко
Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта»
Россия

Панченко Владимир Анатольевич, кандидат технических наук, доцент кафедры, старший научный сотрудник лаборатории

127994, г. Москва, ул. Образцова, д. 9

Researcher ID: P-8127-2017

Scopus Author ID: 57201922860

Web of Science Researcher ID: AAE-1758-2019



А. А. Ковалёв
Федеральный научный агроинженерный центр ВИМ
Россия

Ковалев Андрей Александрович, главный научный сотрудник лаборатории биоэнергетических технологий, доктор технических наук

109428, г. Москва, 1-й Институтский проезд, 5

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134



С. Чакраборти
TIFAC-CORE, Vellore Institute of Technology Vellore
Индия

Чакраборти Суправа, доцент кафедры технологической информации, прогнозирования и оценки (TIFAC), доктор философии

632014, Tamil Nadu

Scopus Author ID: 56479859000



Список литературы

1. Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition // Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.

2. . Lowe R. J., Drummond P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications // Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.

3. . Maestre V. M., Ortiz A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications // Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.

4. . Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.

5. . Arsad A. Z., Hannan M. A., Al-Shetwi Ali Q., Mansur M., Muttaqi K. M., Dong Z. Y., Blaabjerg F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.

6. . Torbjørn Egeland-Eriksen, Amin Hajizadeh, SabrinaSartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives // International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.

7. . Tahir F., Ajjur S. B., Serdar M. Z., Al-Humaiqani M., Kim D., Al-Thani S. K., Sami G., Al-Ghamdi S. G. (2021). Qatar climate change conference 2021. A platform for addressing key climate change topics facing Qatar and the world. Doha, Qatar: Hamad bin Khalifa University Press (HBKU Press). https://doi.org/10.5339/conf_proceed_qccc2021.

8. . Salimi M., Al-Ghamdi S.G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East // Sustainable Cities and Society, 54, 101948. https://doi.org/10.1016/j.scs.2019.101948.

9. . Zhijie Chen, Wei Wei, Lan Song, Bing-Jie Ni (2022). Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production // Sustainable Horizons, 1, 100002. https://doi.org/10.1016/j.horiz.2021.100002.

10. . Fei-Yue Gao, Peng-Cheng Yu, Min-Rui Gao (2022). Seawater electrolysis technologies for green hydrogen production: challenges and opportunities // Current Opinion in Chemical Engineering, 36, 100827. https://doi.org/10.1016/j.coche.2022.100827.

11. . Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet (2022). Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective // Current Opinion in Electrochemistry, 31, 100879. https://doi.org/10.1016/j.coelec.2021.100879.

12. . Ernesto Amores, Margarita Sánchez-Molina, MónicaSánchez (2021). Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production // Results in Engineering, 10, 100235. https://doi.org/10.1016/j.rineng.2021.100235.

13. . Shams Anwar, Faisal Khan, Yahui Zhang, Abdoulaye Djire (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis // International Journal of Hydrogen Energy, 46(63), 3228432317. https://doi.org/10.1016/j.ijhydene.2021.06.191.

14. . Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown (2022). Green hydrogen investments: Investigating the option to wait // Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.

15. . Ying Zhou, Ruiying Li, ZexuanLv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society // Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.

16. . Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality // Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.

17. . Piyali Chatterjee, Mounika Sai Krishna Ambati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review // Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.

18. . Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development // Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.

19. . Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization // Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.

20. . Marius Neuwirth, Tobias Fleiter, Pia Manz, René Hofmann (2022). The future potential hydrogen demand in energy-intensive industries - a site-specific approach applied to Germany // Energy Conversion and Management, 252, 115052. https://doi.org/10.1016/j.enconman.2021.115052.

21. . Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, Fan Yang (2021). The production and application of hydrogen in steel industry // International Journal of Hydrogen Energy, 46(17), 1054810569. https://doi.org/10.1016/j.ijhydene.2020.12.123.

22. . Oliver Posdziech, Konstantin Schwarze, Jörg Brabandt (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis // International Journal of Hydrogen Energy, 44(35), 19089-19101. https://doi.org/10.1016/j.ijhydene.2018.05.16.

23. . Chonnawee Likkasit, Azadeh Maroufmashat, Ali Elkamel, Hong-ming Ku, Michael Fowler (2018). Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries // Energy Conversion and Management, 168, 395-406. https://doi.org/10.1016/j.enconman.2018.04.057.

24. . NREL. Transforming energy. Photovoltaic Research. Best Research-Cell Efficiency Chart. Accessed: May 18, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html.

25. . Shiva Gorjian, Hossein Ebadi, Max Trommsdorff, H. Sharon, Matthias Demant, Stephan Schindele (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations // Journal of Cleaner Production, 292, 126030. https://doi.org/10.1016/j.jclepro.2021.126030.

26. . Gul M., Kotak Y., Muneer T. (2106). Review on recent trend of solar photovoltaic technology // Energy Exploration & Exploitation, 34(4), 485-526. doi:10.1177/0144598716650552.

27. . FAO. 2017. The future of food and agriculture – Trends and challenges. Rome. Accessed: May 18, 2024. [Online]. Available: https://www.iau-hesd.net/sites/default/files/documents/fao.pdf.

28. . World Population Prospects - Population Division - United Nations. Accessed: May 18, 2024. [Online]. Available: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900.

29. . Tahir F., Al-Ghamdi S. G. (2023). Climatic change impacts on the energy requirements for the built environment sector // Energy Reports, 9(1), 670-676. https://doi.org/10.1016/j.egyr.2022.11.033.

30. . Ritchie H., Rosado P., Roser M. Energy // Production and Consumption. Accessed: May 18, 2024. [Online]. Available: https://ourworldindata.org/energy-production-consumption.

31. . International energy agency // Electricity Market Report Update. Outlook for 2023 and 2024. Accessed: May 18, 2024. [Online]. Available: https://iea.blob.core.windows.net/assets/15172a8d-a515-42d7-88a4-edc27c3696d3/ElectricityMarketReport_Update2023.pdf.

32. . Our World in Data. Agricultural output, 1961 to 2019. Accessed: May 18, 2024. [Online]. Available: https://ourworldindata.org/grapher/agricultural-output-dollars?country=OWID_WRL~RUS~OWID_EUR~OWID_ASI~CHN~IDN~IND~Latin+America+and+the+Caribbean~USA.

33. . Dariusz Pyza, Paweł Gołda, Ewelina Sendek-Matysiak (2022). Use of hydrogen in public transport systems // Journal of Cleaner Production, 335, 130247. https://doi.org/10.1016/j.jclepro.2021.130247.

34. . Yanfei Li, Farhad Taghizadeh-Hesary (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China // Energy Policy, 160, 112703. https://doi.org/10.1016/j.enpol.2021.112703.

35. . Panchenko V. A., Daus Yu. V., Kovalev A. A., Yudaev I. V., Litti Yu. V. (2023). Prospects for the production of green hydrogen: Review of countries with high potential // International Journal of Hydrogen Energy, 48(12), 4551-4571. https://doi.org/10.1016/j.ijhydene.2022.10.084.

36. . International Renewable Energy Agency (IRENA). Green hydrogen. Collaborate framework on Green Hydrogen. Accessed: May 18, 2024. [Online]. Available: https://www.irena.org/How-we-work/Collaborative-frameworks/Green-Hydrogen.

37. . Ufa R. A., Malkova Y. Y., Gusev A. L., Ruban N. Y., Vasilev A. S. (2021). Algorithm for optimal pairing of res and hydrogen energy storage systems // International Journal of Hydrogen Energy, 46(68), 33659-33669. https://doi.org/10.1016/j.ijhydene.2021.07.094.

38. . Paolo Marocco, Domenico Ferrero, Andrea Lanzini, Massimo Santarelli (2021). Optimal design of stand-alone solutions based on RES + hydrogen storage feeding off-grid communities // Energy Conversion and Management, 238, 114147. https://doi.org/10.1016/j.enconman.2021.114147.

39. . Paolo Marocco, Domenico Ferrero, Andrea Lanzini, Massimo Santarelli (2022). The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems // Journal of Energy Storage, 46, 103893. https://doi.org/10.1016/j.est.2021.103893.

40. . Bei Li, Jiangchen Li (2022). Sizing and operation of a pure renewable energy based electric system through hydrogen // Energy Reports, 8(1), 1391-1403. https://doi.org/10.1016/j.egyr.2021.11.276.

41. . Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China // Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.

42. . Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP // Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.

43. . Norhidayah Mat Taib, Mohd Radzi Abu Mansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine // Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.

44. . Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook // Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.

45. . Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea // Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.

46. . Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells // International Journal of Hydrogen Energy, 46(76), 3805138072. https://doi.org/10.1016/j.ijhydene.2021.09.047.

47. . Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen // International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/j.ijhydene.2021.07.127.

48. . Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea // Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-8197271.00005-4.

49. . Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping // International Journal of Hydrogen Energy, 47(13), 8565-8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.

50. . Marian Tomasov, Martina Kajanova, Peter Bracinik, David Motyka (2019). Overview of Battery Models for Sustainable Power and Transport Applications // Transportation Research Procedia, 40, 548-555. https://doi.org/10.1016/j.trpro.2019.07.079.

51. . Mohammad Shahjalal, Probir Kumar Roy, Tamanna Shams, Ashley Fly, Jahedul Islam Chowdhury, Md. Rishad Ahmed, Kailong Liu (2022). A review on second-life of Li-ion batteries: prospects, challenges, and issues // Energy, 241, 122881. https://doi.org/10.1016/j.energy.2021.122881.

52. . Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen // International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.

53. . Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems // Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.

54. . Gibson T. L., Kelly N. A. (2008). Optimization of solar powered hydrogen production using photovoltaic electrolysis devices // International Journal of Hydrogen Energy, 33(21), 5931-5940. https://doi.org/10.1016/j.ijhydene.2008.05.106.

55. . Dincer I., Acar C. (2015). Review and evaluation of hydrogen production methods for better sustainability // International Journal of Hydrogen Energy, 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035.

56. . Fereidooni M., Mostafaeipour A., Kalantar V., Goudarzi H. (2018). A comprehensive evaluation of hydrogen production from photovoltaic power station // Renewable and Sustainable Energy Reviews, 82(1), 415–423. https://doi.org/10.1016/j.rser.2017.09.060.

57. . Khelfaoui N., Djafour A., Ghenai C., Laib I., Danoune M. B., Gougui A. (2021). Experimental investigation of solar hydrogen production PV/PEM electrolyser performance in the Algerian Sahara regions // International Journal of Hydrogen Energy, 46(59), 30524-30538. https://doi.org/10.1016/j.ijhydene.2020.11.193.

58. . Hassan Q., Abbas M., Tabar V., Tohidi S., Jaszczur M., Abdulrahman I., Salman, H. (2023). Modelling and analysis of green hydrogen production by solar energy. Energy Harvesting and Systems, 10(2), 229-245. https://doi.org/10.1515/ehs-2022-0093.

59. . Muthia R., Pramudya A.S.P., Maulana M.R., Purwanto W.W. (2024). Techno-economic analysis of green hydrogen production by a floating solar photovoltaic system for industrial decarbonization // Clean Energy, 8(4), 1–14. https://doi.org/10.1093/ce/zkae032.

60. . Dahbi S., Aziz A., Messaoudi A., Mazozi I., Kassmi K., Benazzi N. (2018). Management of excess energy in a photovoltaic/grid system by production of clean hydrogen // International Journal of Hydrogen Energy, 43(10), 5283-5299. https://doi.org/10.1016/j.ijhydene.2017.11.022.

61. . Temiz M., Javani N. (2020). Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production // International Journal of Hydrogen Energy, 45(5), 3457–3469. https://doi.org/10.1016/j.ijhydene.2018.12.226.

62. . Ogbonnaya C., Abeykoon C., Nasser A., Turan A., Ume C.S. (2021). Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review // Energies, 14(20), 6827. https://doi.org/10.3390/en14206827.

63. . Elamri Y., Cheviron B., Mange A., Dejean C., Liron F., Belaud, G. (2018). Rain concentration and sheltering effect of solar panels on cultivated plotsи // Hydrology and Earth System Sciences, 22, 1285-1298. https://doi.org/10.5194/hess-22-1285-2018.

64. . Salvatore Vattiata. Production of green hydrogen by electrolyzer from a large-scale agrovoltaic power plant. Accessed: May 18, 2024. [Online]. Available: https://webthesis.biblio.polito.it/secure/27430/1/tesi.pdf

65. . Sarr A., Soro Y. M., Tossa A. K., Diop L. (2023). Agrivoltaic, A Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review // Processes, 11(3), 948. https://doi.org/10.3390/pr11030948.

66. . Maynard I., Abdulla A. (2023). Assessing benefits and costs of expanded green hydrogen production to facilitate fossil fuel exit in a net-zero transition // Renewable Energy Focus, 44, 85-97. https://doi.org/10.1016/j.ref.2022.12.002.

67. . Rey J., Segura F., Andújar J. (2023). Green hydrogen: resources consumption, technological maturity, and regulatory framework. Energies, 16(17), 6222. https://doi.org/10.3390/en16176222.

68. . Gilbert N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature, https://doi.org/10.1038/nature.2012.11708.

69. . Platis D. P., Anagnostopoulos C. D., Tsaboula A. D., Menexes G. C., Kalburtji K. L., Mamolos A. P. (2019). Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry // Sustainability, 11(6), 1664. https://doi.org/10.3390/su11061664.

70. . Jaiswal B., Agrawa M. (2020). Carbon Footprints of Agriculture Sector. Carbon Footprints. Environmental Footprints and Eco-design of Products and Processes. https://doi.org/10.1007/978-981-13-7916-1_4.

71. . Calvert K., Mabee W. (2015). More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada // Applied Geography, 56, 209–221. https://doi.org/10.1016/j.apgeog.2014.11.028.

72. . Dinesh H., Pearce J. (2016). The potential of agrivoltaic systems // Renewable and Sustainable Energy Reviews, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024.

73. . Goetzberger A., Zastrow A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation // International Journal of Solar Energy, 1(1), 55-69. https://doi.org/10.1080/01425918208909875.

74. . United Nations. Climate actions. Accessed: May 18, 2024. [Online]. Available: https://www.un.org/climatechange?gclid=CjwKCAiArNOeBhAHEiwAze_nKNAnsQSS6WXfWQus4xZuy6p8hFCQoERS1PdcTAU_QabXiJWPA2XesxoC8xMQAvD_BwE.

75. . Kim S.K, Park S. (2023). Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework // Science of The Total Environment, 859(1), 160175. https://doi.org/10.1016/j.scitotenv.2022.160175.

76. . Klokov A. V.; Loktionov E. Y.; Loktionov Y. V.; Panchenko V. A.; Sharaborova E. S. (2023). A Mini-Review of Current Activities and Future Trends in Agrivoltaics // Energies, 16(7), 3009. https://doi.org/10.3390/en16073009.

77. . Pestisha A., Gabnai Z., Chalgynbayeva A., Lengyel P., Bai A. (2023). On-Farm Renewable Energy Systems: A Systematic Review // Energies, 16(2), 862. https://doi.org/10.3390/en16020862.

78. . Matulić D., Željko Andabaka, Radman S., Goran Fruk, Leto J., Jakša Rošin, Rastija M., Varga I., Tea Tomljanović, Hrvoje Čeprnja, Marko Karoglan. (2023). Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia // Agriculture, 13(7), 1447. https://doi.org/10.3390/agriculture13071447.

79. . Pouran H. M., Padilha Campos Lopes M., Nogueira T., Alves Castelo Branco D., Sheng Y. (2022). Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology // iScience, 25(11), 105253. DOI: 10.1016/j.isci.2022.105253.

80. . Hydrogen Overview. Ministry of New and Renewable Energy. India. Accessed: May 18, 2024. [Online]. Available: https://mnre.gov.in/hydrogenoverview/#:~:text=Green%20Hydrogen%20is%20expected%20to,solar%2C%20wind%2C%20or%20hydropower.

81. . Weselek A., Ehmann A., Zikeli S., Lewandowski I., Schindele S., Högy P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review // Agronomy for Sustainable Development, 39(4), 35. https://doi.org/10.1007/s13593-019-0581-3.

82. . Asa’a S., Reher T., Rongé J., Diels J., Poortmans J., Radhakrishnan H.S., A. van der Heide, B. Van de Poel, Daenen M. (2024). A multidisciplinary view on agrivoltaics: Future of energy and agriculture // Renewable and Sustainable Energy Reviews, 200, 114515. https://doi.org/10.1016/j.rser.2024.114515.

83. . Shiva Gorjian, Erion Bousi, Özal Emre Özdemir, Max Trommsdorff, Nallapaneni Manoj Kumar, Abhishek Anand, Karunesh Kant, Shauhrat S. Chopra (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology // Renewable and Sustainable Energy Reviews, 158, 112126. https://doi.org/10.1016/j.rser.2022.112126.

84. . Trommsdorff M. et al. Agrivoltaics: Opportunities for Agriculture and the Energy Transition, Accessed: May 18, 2024. [Online]. Available: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/APV-Guideline.pdf.

85. . International Technology Roadmap for Photovoltaic (ITRPV). Accessed: May 18, 2024. [Online]. Available: https://www.vdma.org/international-technology-roadmap-photovoltaic.

86. . References Agri-PV Solar Parks and Solar Fence Projects. Next2Sun. Accessed: May 18, 2024. [Online]. Available: https://next2sun.com/en/testimonials/.

87. . Sunstream Energy – Cleaner, Greener, Better Energy Solutions. Accessed: May 18, 2024. [Online]. Available: https://sunstreamenergy.ie/.

88. . Dimitrij Chudinzow, Sylvio Nagel, Joshua Güsewell, Ludger Eltrop (2020). Vertical bifacial photovoltaics – A complementary technology for the European electricity supply? // Applied Energy, 264, 114782. https://doi.org/10.1016/j.apenergy.2020.114782.

89. . Muhammad Hussnain Riaz, Hassan Imran, Rehan Younas, Nauman Zafar Butt (2021). The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems // Solar Energy, 230, 1004-1012. https://doi.org/10.1016/j.solener.2021.10.051.

90. . Pietro Elia Campana, Bengt Stridh, Stefano Amaducci, Michele Colauzzi (2021). Optimisation of vertically mounted agrivoltaic systems // Journal of Cleaner Production, 325, 129091. https://doi.org/10.1016/j.jclepro.2021.129091.

91. . Odysseas Alexandros Katsikogiannis, Hesan Ziar, Olindo Isabella (2022). Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach // Applied Energy, 309, 118475. https://doi.org/10.1016/j.apenergy.2021.118475.

92. . Gulhane S. G., Phadke A. R (2023). Design of Agro-photovoltaic System for Optimized Energy Generation and Crop Yield using Fuzzy Framework. 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 2023, 1-6. DOI: 10.1109/INOCON57975.2023.10101340.

93. . Riaz M. H., Imran H., Alam H., Alam M. A., Butt N. Z. (2022). Crop-Specific Optimization of Bifacial PV Arrays for Agrivoltaic Food-Energy Production: The Light-Productivity-Factor Approach // IEEE Journal of Photovoltaics, 12(2), 572-580. doi: 10.1109/JPHOTOV.2021.3136158.

94. . Bolinger M., Bolinger G. (2022). Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density // IEEE Journal of Photovoltaics, 12(2), 589-594. doi: 10.1109/JPHOTOV.2021.3136805.

95. . European Commission, Joint Research Centre, Chatzipanagi A., Taylor N., Jaeger-Waldau A. (2023). Overview of the potential and challenges for agri-photovoltaics in the European Union. Publications Office of the European Union. Accessed: May 18, 2024. [Online]. Available: https://data.europa.eu/doi/10.2760/208702.

96. . Patel U. R., Gadhiya G.A., Chauhan P.M. (2024). Techno-economic analysis of agrivoltaic system for affordable and clean energy with food production in India // Clean Technologies and Environmental Policy, 26, 2117-2135. https://doi.org/10.1007/s10098-023-02690-1.

97. . Insolagrin. Dynamic Agrivoltaic Solution. Solar panels for Farmers. Accessed: May 18, 2024. [Online]. Available: https://insolight.ch/solution/.

98. . Malu P., Sharma U., Pearce J. (2017). Agrivoltaic potential on grape farms in India // Sustainable Energy Technologies and Assessments, 23, 104-110. https://doi.org/10.1016/j.seta.2017.08.004.

99. . Leiping Duan, Ashraf Uddin. (2020). Progress in Stability of Organic Solar Cells // Advanced Science, 7(11), 1903259. https://doi.org/10.1002/advs.201903259.

100. . Marrou H., Wery J., Dufour L., Dupraz C. (2013). Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels // European Journal of Agronomy, 44, 54-66. https://doi.org/10.1016/j.eja.2012.08.003.

101. . Sekiyama T., Nagashima A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop // Environments, 6(6), 65. https://doi.org/10.3390/environments6060065.

102. . Elamri Y., Cheviron B., Lopez J. -M., Dejean C., Belaud G. (2018). Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces // Agricultural Water Management, 208, 440-453, https://doi.org/10.1016/j.agwat.2018.07.001.

103. . Henry J. Williams, Khaled Hashad, Haomiao Wang, K. Max Zhang. (2023). The potential for agrivoltaics to enhance solar farm cooling // Applied Energy, 332, 120478. https://doi.org/10.1016/j.apenergy.2022.120478.

104. . Adeh E. H., Good S. P., Calaf M., Higgins C. W. (2019). Solar PV Power Potential is Greatest Over Croplands // Scientific Reports, 9, 11442. https://doi.org/10.1038/s41598-019-47803-3.

105. . Marrou H., Guilioni L., Dufour L., Dupraz C., Wery J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? // Agricultural and Forest Meteorology, 177, 117132. https://doi.org/10.1016/j.agrformet.2013.04.012.

106. . Barron-Gafford G. A., Pavao-Zuckerman M. A., Minor R. L. et al. (2019). Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands // Nature Sustainability, 2, 848-855. https://doi.org/10.1038/s41893-019-0364-5.

107. . Dupraz C., Marrou H., Talbot G., Dufour L., Nogier A., Ferard Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes // Renewable Energy, 36(10), 2725-2732. https://doi.org/10.1016/j.renene.2011.03.005.

108. . Harshavardhan Dinesh, Joshua M. Pearce. (2016). The potential of agrivoltaic systems // Renewable and Sustainable Energy Reviews, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024.

109. . Valle B., Simonneau T., Sourd F., Pechier P., Hamard P., Frisson T., Ryckewaert M., Christophe A. (2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops // Applied Energy, 206, 1495-1507. https://doi.org/10.1016/j.apenergy.2017.09.113.

110. . Elinor P. Thompson, Emilio L. Bombelli, Simon Shubham, Hamish Watson, Aldous Everard, Vincenzo D’Ardes, Andrea Schievano, Stefano Bocchi, Nazanin Zand, Christopher J. Howe, Paolo Bombell. (2020). Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland // Advanced Energy Materials, 10(35), 2001189. https://doi.org/10.1002/aenm.202001189.

111. . Aira J-R., Gallardo-Saavedra S., Eugenio-Gozalbo M., Alonso-Gómez V., Muñoz-García M-Á., Hernández-Callejo L. (2021). Analysis of the Viability of a Photovoltaic Greenhouse with Semi-Transparent Amorphous Silicon (a-Si) Glass // Agronomy, 11(6), 1097. https://doi.org/10.3390/agronomy1106109.

112. . Esther Magadley, Ragheb Kabha, Mohamad Dakka, Meir Teitel, Maayan Friman-Peretz, Murat Kacira, Rebekah Waller, Ibrahim Yehia (2022). Organic photovoltaic modules integrated inside and outside a polytunnel roof // Renewable Energy, 182, 163-171. https://doi.org/10.1016/j.renene.2021.10.012.

113. . Shahriyar Safat Dipta, Jean Schoenlaub, Md Habibur Rahaman, Ashraf Uddin (2022). Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses // Applied Energy. 2022, 328, 120208. https://doi.org/10.1016/j.apenergy.2022.120208.

114. . Jeum-Jong Kim, Mangu Kang, Ock Keum Kwak, Yong-Jin Yoon, Kil Sik Min, Moo-Jung Chu (2014). Fabrication and Characterization of Dye-Sensitized Solar Cells for Greenhouse Application // Hindawi Publishing Corporation International Journal of Photoenergy, 2014(1), 376315. http://dx.doi.org/10.1155/2014/376315.

115. . Othmane Essahili, Mouad Ouafi, Omar Moudam (2022). Recent progress in organic luminescent solar concentrators for agrivoltaics: Opportunities for rare-earth complexes // Solar Energy, 245, 58-66. https://doi.org/10.1016/j.solener.2022.08.054.

116. . Michael E. Loik, Sue A. Carter, Glenn Alers, Catherine E. Wade, David Shugar, Carley Corrado, Devin Jokerst, Carol Kitayama (2017). Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus // Earth’s Future, 5(10), 1044-1053. https://doi.org/10.1002/2016EF000531.

117. . Nayak P. K., Mahesh S., Snaith H. J., Cahen D. (2019). Photovoltaic solar cell technologies: analysing the state of the art // Nature Reviews Materials, 4, 269285. https://doi.org/10.1038/s41578-019-0097-0.

118. . Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya. (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply // International Journal of Energy Optimization and Engineering, 9(2), 74-94. DOI: 10.4018/IJEOE.2020040106.

119. . Reda Hassanien Emam Hassanien, Li Ming (2017). Influences of greenhouse-integrated semi-transparentphotovoltaics on microclimate and lettuce growth // International Journal of Agricultural and Biological Engineering, 10(6), 11-22. DOI: 10.25165/j.ijabe.20171006.3407.

120. . Panchenko V. A., Kovalev A. A., Kovalev D. A., Litty Yu. V. (2023). Review of modern methods and technologies for using of solar energy in the operation of anaerobic digestion systems // International Journal of Hydrogen Energy, 48(53), 20264-20278. https://doi.org/10.1016/j.ijhydene.2023.02.109.

121. . Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries // Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

122. . Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh // Energy Procedia, 160, 277284. https://doi.org/10.1016/j.egypro.2019.02.147.

123. . Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viableoption in rural areas of developing countries // Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.

124. . Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas // International Journal of Hydrogen Energy, 45, 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.

125. . Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system // Applied Energy, 169, 138-149.https://doi.org/10.1016/j.apenergy.2016.02.037.

126. . International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. Accessed: May 18, 2024. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf

127. . Friedman S. J., Fan Z., Tang K. (2019). «Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today». New York: Columbia University, Center on Global Energy Policy. Accessed: May 18, 2024. [Online]. Available: https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.

128. . Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». Accessed: May 18, 2024. [Online]. Available: https://www.woodmac.com/our-expertise/focus/transition/green-hydrogen-production-2019/.

129. . Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions // Water Research, 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.

130. . Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives // Biotechnology Advances, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

131. . Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading // Journal of Cleaner Production, 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.


Рецензия

Для цитирования:


Панченко В.А., Ковалёв А.А., Чакраборти С. Агривольтаика и зелёный водород – симбиоз технологий солнечной энергетики для устойчивого развития человечества. Альтернативная энергетика и экология (ISJAEE). 2024;(10):19-44. https://doi.org/10.15518/isjaee.2024.10.019-044

For citation:


Panchenko V.A., Kovalev A.A., Чакраборти S.Ch. Agrivoltaics and green hydrogen – symbiosis of solar energy technologies for sustainable development of humanity. Alternative Energy and Ecology (ISJAEE). 2024;(10):19-44. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.019-044

Просмотров: 85


ISSN 1608-8298 (Print)