Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Efficiency of the thermal hybrid solar collector in the south of Siberia

https://doi.org/10.15518/isjaee.2024.10.060-071

Abstract

The task of the study was to determine the maximum possible efficiency of thermal hybrid solar collectors when used in the south of Siberia. To do this, the nodal points and the efficiency of the organic Rankine cycle were calculated at the temperatures of the photovoltaic panel equal to 25 °C, 50 °C, 75 °C and 100 °C, plots of the dependence of the efficiency of the photovoltaic panel, the efficiency of the organic Rankine cycle and the efficiency of the thermal hybrid solar collector on temperature of the photovoltaic panel. The efficiency of the organic Rankine cycle at PV panel temperatures of 25 °C, 50 °C, 75 °C and 100 °C is 5,3%, 11,5%, 16,8% and 21,3%, respectively. The efficiency of a photovoltaic panel at its temperatures of 25 °C, 50 °C, 75 °C and 100 °C is 17%, 14,9%, 12,8% and 10,6%, respectively. The efficiency of a thermal hybrid solar collector at PV panel temperatures of 25 °C, 50 °C, 75 °C and 100 °C is 22,3%, 26,4%, 29,6% and 31,9%, respectively. The article substantiates the choice of ammonia (R717) as a low-boiling working fluid in the organic Rankine cycle. It is shown that the maximum possible efficiency of a thermal hybrid solar collector, equal to 31,9%, is achieved at a photovoltaic panel temperature of 100 °C. Based on the results of the work, it was concluded that the maximum possible amount of energy that can be obtained per year in Novosibirsk from 1 m2 of a thermal hybrid solar collector following the sun is 856,5 kW·h; the maximum possible amount of energy that can be obtained per year in Novosibirsk from 1 m2 of a stationary thermal hybrid solar collector is 585,4 kW·h.

About the Author

V. A. Khoreva
Novosibirsk State Technical University
Russian Federation

Khoreva Valentina Alexandrovna, Senior Lecturer, Department of Thermal Power Plants

630073, г. Novosibirsk, prospect К. Мarxa, 20 



References

1. . Sarbu L. Solar heating and cooling systems. Ch.2. Solar Radiation / L. Sarbu, C. Sebarchievic // TNQ Books and Journals. – 2017. – 441 p.

2. . Dunnikov D. O. Hydrogen energy technologies / Proceedings of the seminar of the laboratory of VET JIHT RAS Issue 1. – P. 5-17.

3. . Romero M. Terrestrial solar thermal power plants: on the verge of commercialization / M. Romero, D. Martınez, E. Zarza // 4th international conference on solar power from space. – 2004.

4. . Karabarin D. The Use of Low-Potential Energy Sources Based on Organic Rankine Cycle / D. Karabarin, S. Mihailenko // Journal of Siberian Federal University. Engineering & Technologies. – 2018. Vol. 11, No. 7. – Pp. 867-876.

5. . Almogren S., Veziroglu T. N. Solar-hydrogen energy system for Saudi Arabia // Alternative Energy and Ecology (ISJAEE). No. 7-9 (255-257). – 2018. P. 30-42.

6. . Tchanche F. B. Low-grade heat conversion into power using organic Rankine cycles / F. B. Tchanche, Gr. Lambrinos, A. Frangoudakis, G. Papadakis // Renewable and sustainable energy reviews. – 2011. Vol 15, No. 8. Pp. 3963-3979.

7. . Gashnikova A. O. Hydrogen energy and its impact on the environment. Science and youth: problems, searches, solutions // Proceedings of the All-Russian scientific conference of students, graduate students and young scientists. Novokuznetsk, 2022. – P. 80-84

8. . Renewable energy in Russia: a critical perspective. Naumov I. I., Motorin D. E., Tarasyuk M. A. // Science diary. – 2021. – No. 4 (52).

9. . Janchoszek L. Organic Rankine cycle: use in cogeneration / L. Janchoszek, P. Kuntz // Turbines and diesel engines. – 2012, March-April. – P. 50-53.

10. . Nowotny Ja., Veziroglu T. N. Impact of hydrogen on the environment // Alternative Energy and Ecology (ISJAEE). – 2019. – No. 1-3 (285-287). – P. 16-24.

11. . Almogren S., Veziroglu T. N. Solar-hydrogen energy system for Saudi Arabia // Alternative Energy and Ecology (ISJAEE). – 2018. – No. 7-9 (255-257). – P. 30-42.

12. . 12. Ivlev V. I. Evaluation of technical indicators of promising spiral pneumatic motors / V. I. Ivlev, V. M. Bozrov, V. A. Voronov // Compressor technology and pneumatics. – 2014, No. 1. – P. 26.

13. . Novotny J., Bak T., Chu D., Fichter S., Mürch G., Veziroglu T. N. Sustainable Practices: Solar Hydrogen Fuel and Sustainable Energy Systems Educational Program // Alternative Energy and Ecology (ISJAEE). – 2017. – No. 22-24 (234-236). – P. 14-24.

14. . Leonov, V. P. Rankine Cycle with a Low-Potential Heat Source / V. P. Leonov, V. A. Voronov, K. A. Apsit, A. V. Tsipun // Engineering Journal: Science and Innovation. – 2015. – No. 2. – URL: http://engjournal.ru/articles/595/595.pdf

15. . Yılmaz S., Metin Ö., Acar E. G., Yanalak G., Aslan E., Kılıç M., Hatay Patır İ. Enhanced hydrogen evolution by using ternary nanocomposites of mesoporous carbon nitride/black phosphorous/transition metal nanoparticles as photocatalysts under visible light: a comparative experimental and theoretical study // Applied Surface Science. – 2022. – Vol. 593. – P. 153398.

16. . Redding K. E., Appel J., Boehm M., Gutekunst K., Schuhmann W., Nowaczyk M. M., Yacoby I. Advances and challenges in photosynthetic hydrogen production // Trends in Biotechnology. – 2022.

17. . Daiko Yu., Iwamoto Yu.Hydrogen adsorption and electronic structural calculation of a polymer-derived sich membrane with a unique affinity for molecular hydrogen // Journal of Sol-Gel Science and Technology. – 2022. – Vol. 104. – No. 3. – Pp. 449-455.

18. . Tikhonov S. I. Autonomous low-power energy plants using low-potential heat / S. I. Tikhonov, A. V. Ilyin, Yu. N. Lukyanov, A. L. Perminov, A. I. Khitrov // Environmental Science. – 2013. – P. 199-204.

19. . Wang S., Li Y., Wang X., Zi G., Zhou C., Liu B., Huang W., Wang L., Liu G. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity // Journal of Materials Science and Technology. – 2022. – Vol. 104. – Pp. 155-162.

20. . Mani S.S., Rajendran S., Mathew T., Nalajala N., Gopinath C. S. Electronically integrated mesoporous Ag–TiO2 nanocomposite thin films for efficient solar hydrogen production in direct sunlight // Energy Technology. – 2022. – Vol. 10. – No. 1. – Pp. 2100356.

21. . Pérez A., Orfila M., Linares M., Botas J.A., Sanz R., Marugán J., Molina R. Hydrogen production by thermochemical water splitting with La0.8Al0.2MeO3-δ perovskites prepared under controlled PH // Catalysis Today. – 2021.

22. . Lawrence D. J., Smith B. L., Collard C. D., Elliott K. A., Fakhoury K. L., Mangold J. D., Soyka A. N. Monolithically-integrated bivo4/p+-n gaas1-xpx tandem photoanodes capable of unassisted solar water splitting // International Journal of Hydrogen Energy (IJHE). – 2021. – Vol. 46. – No. 2. – Pp. 1642-1655.

23. . Rumyantsev M. Yu. High-speed turbogenerators for autonomous low-power power plants using low-potential heat / M. Yu. Rumyantsev, N. E. Zakharova, A. V. Polikarpov, L. N. Ponomareva, T. M. Rozenoer // Proceedings of the All-Russian scientific and practical conference «Improving the reliability and efficiency of operation of power plants and energy systems». 2010, June 1-3, 2010, Moscow. In two volumes. Volume 1. MPEI Publishing House. – 2010. – P. 240 -243.

24. . Quoilin S. Techno-economic survey of Organic Rankine Cycle (ORC) systems / M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort // Renewable a Sustainable Energy Reviews. – 2013. – Vol. 22. – Pp. 168-186.

25. . Kim J., Lee J. S., Jang Y. J., Baek W., Hyeon T., Lee A. R., Kim J. -Y. Highly efficient photoelectrochemical hydrogen production using nontoxic cuin1.5se3quantum dots with zns/sio2double overlayers // ACS Applied Materials & Interfaces. – 2021.

26. . Chot C. Y., Yaw C. S., Chong M. N., Serron A. C., Ocon J. D., Soh A. K.Understanding the synergistic role of pt-mediated moo3 photoanode with self-photorechargeability during illuminated and non-illuminated conditions: a combined experimental and density functional theory study // Journal of the Taiwan Institute of Chemical Engineers. – 2021. – Vol. 120. – Pp. 381-390.

27. . Naumov I. I., Motorin D. E., Tarasyuk M. A. Renewable energy in Russia: a critical perspective // Diary of Science. – 2021. – No. 4 (52).

28. . Wang Z., Wang L., Hisatomi T., Domen K., Li R., Li C., Sayama K., Liu G. Joule. Efficiency accreditation and testing protocols for particulate photocatalysts towards solar fuel production. – 2021. – Vol. 5. –№ 2. – Pp. 344-359.

29. . Brasz L. J. Ranking of Working Fluids for Organic Rankine Cycle Applications / L. J. Brasz, W. M. Bilbow // International Refrigeration and Air Conditioning Conference at Purdue. – July 12-15, 2004. – URL: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1721&context=iracc.

30. . Artemenko S. V. Fluorinated ether – working fluids for low-temperature Rankine cycle on organic substances / S. V. Artemenko // Problemele energeticii regionale. – 2014. – No. 3. – P. 22-30.

31. . Konstandopoulos A. G., Syrigou M., Pagkoura C., Sakellariou K., Lorentzou S., Dimitrakis D. A. Solar fuels and industrial solar chemistry // Concentrating Solar Power Technology: Principles, Developments, and Applications. – 2020. – Pp. 677-724.

32. . Segovia-Guzmán M. O., Zaragoza-Galán G., Ramos-Sánchez V.H., Román-Aguirre M., Collins-Martínez V. H., Verde-Gomez J. Y. Green Cu2O/TiO2 heterojunction for glycerol photoreforming // Catalysis Today. – 2020. – Vol. 349. – Pp. 88-97.

33. . Genc E., Coskun H., Yanalak G., Aslan E., Patir I.H., Ozel F. Dye-sensitized photocatalytic hydrogen evolution by using copper-based ternary refractory metal chalcogenides // International Journal of Hydrogen Energy (IJHE). – 2020. – Vol. 45. –№ 32. – Pp. 15915-15923.

34. . Karabarin D. I. Use of low-potential energy sources based on the organic Rankine cycle / D. I. Karabarin, S. A. Mikhailenko // Journal of Siberian Federal University. Engineering & Technologies. – 2018. – Vol. 11, № 7. – Pp. 867-876.

35. . Grinman M. I. Prospects for the Application of Low-Capacity Power Plants with Low-Boiling Working Fluids / M. I. Grinman, V. A. Fomin // Power Engineering. – 2006. No. 1. – Pр. 63-69.

36. . Book about the Sun. Guide to Designing Solar Heating Systems // Viessmann. – 2010. – 194 p.

37. . Borush O. V. General Power Engineering. Power Plants: Textbook / O. V. Borush, O. K. Grigorieva // Novosibirsk: Publishing House of NSTU, 2017. – 96 p. – ISBN 978-5-7782-3430-7.

38. . Computer program CoolPack version 1.46.

39. . Mohan P. S., Chang C. -T., Purkait M. K. Experimental evaluation of PT/TiO2/RgO as an efficient catalyst via artificial photosynthesis under UVB & visible irradiation // International Journal of Hydrogen Energy (IJHE). – 2020.

40. . Kurenkova A. Y., Markovskaya D. V., Gerasimov E. Y., Prosvirin I. P., Cherepanova S. V., Kozlova E. A. New insights into the mechanism of photocatalytic hydrogen evolution from aqueous solutions of saccharides over CdS-based photocatalysts under visible light // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – No. 55. – Pp. 30165-30177.

41. . Brahmachari U., Pokkuluri P. R., Tiede D. M., Niklas J., Poluektov O. G., Mulfort K. L., Utschig L. M. Interprotein electron transfer biohybrid system for photocatalytic H2 production. Photosynthesis Research. – 2020. – Vol. 143. – No. 2. – Pp. 183-192.

42. . Huang Ch., Liao Ch., Wu J. Ch. Photocatalytic water splitting using hygroscopic MgO modified TiO2/WO3 dual-layer photocatalysts // Korean Journal of Chemical Engineering. – 2020. – Vol. 37. – No. 8. – Pp. 1352-1359.

43. . Würfel P. The Physics of Solar Cells / P. Würfel // Weinheim: Wiley-VCH. – 2005. – 289 p.

44. . 44. Green M. Third generation photovoltaics. Advanced solar energy conversion / M. Green // Springer. – 2003. – 160 p.

45. . Khoreva V. A. Exergy analysis of the potential of solar irradiation / V. A. Khoreva, S. L. Elistratov // Journal of Physics: Conference Series. – 2020. doi:10.1088/1742-6596/1677/1/012108.

46. . Aristov G. A. The Sun / G. A. Arestov // Moscow: State Publishing House of Technical and Theoretical Literature. – 1950. – 52 p.

47. . Fresno F., Fernández-Saavedra R., Belén Gómez-Mancebo M., Vidal A., Sánchez M., Isabel Rucandio M., Quejido A. J., Romero M. Solar hydrogen production by two-step thermochemical cycles: evaluation of the activity of commercial ferrites // International Journal of Hydrogen Energy (IJHE). – 2009. – Vol. 34. – № 7. – Pp. 2918-2924.

48. . Vakhromeev B. A. Japanese experience in studying and using hydrogen energy in the framework of the global decarbonization process. Turning points in history: people, events, research // Proceedings of the international scientific conference dedicated to the 350th anniversary of the birth of Peter the Great: in 3 volumes. St. Petersburg, 2022. – Pр. 275-279.

49. . Sales A. D., Oliveira S. D., Veziroglu T. N. Wind-solar hydrogen energy system for the state of Ceará, Brazil. Do Sacramento // Alternative Energy and Ecology (ISJAEE). – 2019. – No. 7-9 (291-293). – Pр. 32-42.

50. . Kopylov S. A., Tenitilova K. S., Belyaeva V. G., Abaeva S. M. TO THE QUESTION OF DEVELOP- MENT OF ENVIRONMENTALLY CLEAN HYDRO- GEN ENERGY. In the collection: Modern trends in science, technology, education // Proceedings of the All-Russian scientific and practical conference. – Orel, 2023. – P. 111-118.

51. . Vissarionov V. I. Solar energy / V. I. Vissarionov, G. V. Deryugina, V. A. Kuznetsova, N. K. Malinin // Moscow: MPEI Publishing House. – 2008. – 317 p.

52. . Khoreva V. A. Mathematical simulation of the flux of the solar radiation coming to the collector / V. Khoreva, S. Elistratov, N. Vorogushina, I. Sadkin // Lecture Notes in Mechanical Engineering. – 2022. – Pр. 207-2015. doi.org/10.1007/978-981-16-9376-2.

53. . Chukhin I. M. Production and use of hydrogen at NPPs.State and Prospects of Development of Electrical and Thermal Technology (XXII Benardos Readings) // Proceedings of the International Scientific and Technical Conference Dedicated to the 75th Anniversary of the Heat and Power Engineering Faculty. – Ivanovo, 2023. – Pp. 125-127.

54. . Aidarov M. A. Hybrid Energy Complex for Combined Production of Electric, Thermal Energy and Hydrogen. XXVI All-Russian Postgraduate and Master’s Scientific Seminar Dedicated to the Day of Power Engineer // Materials of Reports: in 3 volumes. – Kazan, 2023. – Pp. 127-130.

55. . Krasivov Ya. Yu. Prospects for the Implementation of Hydrogen Technologies in the Energy Sector in the Republic of Tatarstan. Tinchurin Readings – 2023 «Energy and Digital Transformation» // Proceedings of the International Youth Scientific Conference. In 3 volumes. Under the general editorship of E. Yu. Abdullazyanov. Kazan, 2023. Pр. 682-684.

56. . Gusev A. L., Jabbarov T. G., Mamedov Sh. G., Malikov R. Kh., Hajibalaev N. M., Abdullaeva S. D., Abbasov N. M. Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production // Alternative Energy and Ecology (ISJAEE). – 2023. – No. 1 (406). – Pр. 36-50.

57. . Kraev V. M., Tikhonov A. I. Prospects for the Application of Hydrogen Energy in European Countries // STIN. – 2023. – No. 4. – Pр. 39-42.

58. . Linnik Yu. N., Falyakhova E. D. Hydrogen energy and prospects for its development // University Bulletin. – 2023. – No. 4. – Pр. 33-39

59. . Nastenko A. A., Filatov V. V., Bezpalov V. V., Gorin D. S. State programs and projects to stimulate leading EU companies in the use of renewable energy sources, hydrogen and recycling of municipal solid waste // Microeconomics. – 2023. – No. 1. – Pр. 52-60.

60. . Egorov A. N., Bayramov A. N. Water electrolysis and reversible fuel cells are promising «green» technologies for hydrogen energy // Energy security and energy saving. – 2023. – No. 3. – Pр. 23-32.

61. . Khitrykh D. P., Krasnova A. A. Hydrogen energy in Russia: current state and prospects. Quality management. – 2023. – No. 9. – Pр. 6-14.

62. . Shapovalov A. B. Hydrogen energy as a consequence of decarbonization of economic systems. // Bulletin of Moscow University named after S. Yu. Witte. Series 1: Economics and Management. – 2023. – No. 2 (45). – Pр. 59-66.

63. . Savostyanov A. P., Yakovenko R. E., Komissarova M. A. Prospects for the development of the hydrogen technologies market // Drucker Bulletin. – 2023. – No. 3 (53). – Pр. 108-119.


Review

For citations:


Khoreva V.A. Efficiency of the thermal hybrid solar collector in the south of Siberia. Alternative Energy and Ecology (ISJAEE). 2024;(10):60-71. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.060-071

Views: 36


ISSN 1608-8298 (Print)