Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Particle properties influence on the borderline between gas-dispersed flows with high and low particle concentrations

https://doi.org/10.15518/isjaee.2024.10.110-128

Abstract

Computational fluid dynamics (CFD) methods were used to analyze the flow around two sequentially arranged bodies. A comparative assessment was conducted to determine the conditions under which hydrodynamic instability may occur in low-concentration gas-dispersed flows. Variations in the physical properties of particles, typical of those found in industrial biomass and fossil fuel energy installations, were considered in this assessment. The numerical model for laminar flow around individual particles was validated using the experimental data of Rowe and Henwood for dimensionless intersphere distance of 5, 11, 17, and 23. It was demonstrated that the velocity profile upstream of the first sphere influences the ratio of forces acting on each sphere. The critical dimensionless center-to-center distance (x/d)кр was calculated, at which the ratio of the force acting on the second particle (F2) to that on the first particle (F1) equals 0,95 (indicating the onset of convergence), under steady uniform gas flow conditions in an elemental streamtube of an ideal entrained-flow reactor for particles of spherical and plate-like shapes. Within the Reynolds number range 2,0·10-1…3,2·103, the influence of particle density, size, and shape on the corresponding critical volume concentration φкр and (x/d)кр was determined. Additionally, for spheres, the force ratio F2/F1 = 0,90 was considered, which allowed to establish the transition zone between entrained-flow systems and circulating fluidized bed (CFB) boilers. Simulations of gas flow around two plates with three different orientations relative to the incoming flow were conducted. The results demonstrate that the mutual orientation of plate-like particles in the flow affects their hydrodynamic interaction. Specifically, compared to the scenario of flow around two spheres of equivalent diameter, the risk of convergence increases when the particles are oriented with their largest face perpendicular to the incoming flow, and decreases when they are oriented with their smallest face perpendicular to the incoming flow. The effectiveness of the proposed method was verified by analyzing a range of systems, including power boilers, industrial gasifiers, and large-scale test installations.

About the Authors

M. I. Ershov
Ural Federal University; PLM Ural LLC
Russian Federation

Ershov Mikhail Igorevich, Research Engineer of the New Energy Technology Laboratory of Ural Power Engineering Institute; technical support engineer

620002, Yekaterinburg, 19 Mira Street

620131, Yekaterinburg, 16b Metallurgov Street



N. A. Abaimov
Ural Federal University
Russian Federation

Abaimov Nikolai Anatolevich, Candidate of Technical Sciences,
Associate Professor of the Department of Thermal Power Plants of the Ural Power Engineering Institute

620002, Yekaterinburg, 19 Mira Street



P. V. Osipov
Ural Federal University
Russian Federation

Osipov Pavel Valentinovich, Currently he is a Senior Lecturer at the
Thermal Power Plants Department of Ural Power Engineering Institute

620002, Yekaterinburg, 19 Mira Street



V. G. Tuponogov
Ural Federal University
Russian Federation

Tuponogov Vladimir Gennadievich, Doctor of Technical Sciences. Currently he is Professor of Department of Heat Power Engineering and Heat Engineering

620002, Yekaterinburg, 19 Mira Street



S. V. Alekseenko
Ural Federal University; Kutateladze Institute of Thermophysics of the SB RAS
Russian Federation

Alekseenko Sergey Vladimirovich, Doctor of Physical and Mathematical Sciences, Academician of the Russian Academy of Sciences. Currently he is a Scientific Director; Chief Researcher of the New Energy Technology Laboratory

620002, Yekaterinburg, 19 Mira Street

630090, Novosibirsk, Academician Lavrentyev Avenue 1 



A. F Ryzhkov
Ural Federal University
Russian Federation

Doctor of Technical Sciences. Currently he is a Head of the New Energy New Energy Technology Laboratory, Professor of the Department of Thermal Power Plants of Ural Power Engineering Institute

Ryzhkov Alexander Filippovich,

620002, Yekaterinburg, 19 Mira Street



References

1. . Nascimento F. R. M., González A. M., Lora E. E. S., Ratner A., Palacio J. C. E., Reinaldo R. Benchscale bubbling fluidized bed systems around the world – Bed agglomeration and collapse: A comprehensive review // International Journal of Hydrogen Energy, 2021, vol. 46, no. 36, pp. 18740-18766, doi: 10.1016/j.ijhydene.2021.02.086.

2. . Göktepe B., Umeki K., Gebart R. Does distance among biomass particles affect soot formation in an entrained flow gasification process? // Fuel Processing Technology, 2016, vol. 141, pt. 1, pp. 99-105, doi: 10.1016/j.fuproc.2015.06.038.

3. . Babij V. I., Kuvaev YU. F. Gorenie ugol’noj pyli i raschet pyleugol’nogo fakela. – M.: Ehnergoatomizdat, 1986. – 208 s.

4. . Hasse C., Debiagi P., Wen X., Hildebrandt K., Vascellari M., Faravelli T. Advanced modeling approaches for CFD simulations of coal combustion and gasification // Progress in Energy and Combustion Science, 2021, vol. 86, 100938, doi: 10.1016/j.pecs.2021.100938

5. . Wu X., Guo Q., Gong Y., Cheng C., Ding L., Wang F., Yu G. Visualization study on particle flow behaviors during atomization in an impinging entrained-flow gasifier // Chemical Engineering Science, 2020, vol. 225, 115834, doi: 10.1016/j.ces.2020.115834.

6. . Cai R., Luo K., Watanabe H., Kurose R., Fan J. Recent advances in high-fidelity simulations of pulverized coal combustion // Advanced Powder Technology, 2020, vol. 31(7), pp. 3062-3079, doi: 10.1016/j.apt.2020.05.001.

7. . Yerushalmi J. High velocity fluidized beds // in: D. Geldart (Ed) Gas Fluidization Technology, Chapter 7 , John Willey & Sons, New York, 1986.

8. . Lecner B. Regimes of large-scale fluidized beds for solid fuel conversion // Powder technology, 2017, vol. 308, pp. 362-367, doi: 10.1016/j.powtec.2016.11.070.

9. . Bi H. T., Grasce J. R. Flow regime diagrams for gas-solid fluidization and upward transport // International Journal of Multiphase Flow, 1995, vol. 21, no. 6., pp. 1229-1236, doi: 10.1016/0301-9322(95)00037-X.

10. . Matsen J. M. Mechanism of choking and entrainment // Powder technology, vol. 32(1), pp. 21-33, 1982, doi: 10.1016/0032-5910(82)85003-1.

11. . Gidaspow D., Mostofi R. Maximum carrying capacity and granular temperature of A, B and C particles // AIChE Journal, 2003, vol. 49. no. 4. pp. 831-843, doi: 10.1002/aic.690490404.

12. . Knowlton T. M. Solids transfer in fluidized systems // in: D. Geldart (Ed) Gas Fluidization Technology, Chapter 12, John Willey & Sons, New York, 1986.

13. . Bi H. T., Grasce J. R., Zhu J. X. Types of choking in vertical pneumatic systems // International Journal of Multiphase Flow, 1993, vol. 19, no. 6, pp. 1077-1092, doi: 10.1016/0301-9322(93)90079-A.

14. . Rabinovich E., Kalman H. Flow regime diagram for vertical pneumatic conveying and fluidized bed systems // Powder technology, 2011, vol. 207, no. 1-3, pp. 119-133, doi: 10.1016/j.powtec.2010.10.017.

15. . Yang W. C. «Choking» Revisited // Industrial Engineering Chemical Research, 2004, vol. 43, no. 18, pp. 5496-5506, doi: 10.1021/ie0307479.

16. . M. Smoluchowski. Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen. Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. Nat., Sér. A Sci. Math., 1911, pp. 28-39.

17. . Happel J., Brenner H. Low Reynolds Number Hydrodynamics. Prentice-Hall, 1965, 553 pp.

18. . Rowe P. N., Henwood G. A. Drag forces in a hydraulic model of a fluidized bed. Part I // Transactions of the Institution of Chemical Engineers, 1961, vol. 39, pp. 43-54.

19. . Abbas S., Mohammed S., Drag Forces under Longitudinal Interaction of Two Particles // Iraqi Journal of Chemical and Petroleum Engineering, 2007, vol. 8, pp. 1-4, doi:10.31699/IJCPE.2007.2.1.

20. . Cocetta F., Szmelter J., Gillard M. Simulations of stably stratified flow past two spheres at Re = 300 // Physics of Fluids, 2021, vol. 33, no. 4, 046602, doi: 10.1063/5.0044801.

21. . Abed A. H., Shcheklein S. E., Pakhaluev V. M. Numerical and Experimental Investigation of heat transfer and flow structures around three heated spheres in tandem arrangement // IOP Conference Series: Materials Science and Engineering, 2020, vol. 791, 012002, doi: 10.1088/1757-899X/791/1/012002.

22. . Yang J., Zhu X., Liu M., Wang C., Wu Y., Shen Z. Wake bifurcations behind two circular disks in tandem arrangement // Physical Review Fluids, 2022, vol. 7, no. 6, 064102, doi: 10.1103/PhysRevFluids.7.064102.

23. . Kotsev T. Numerical Study of Hydrodynamic Interaction between a Row of Spheroids in a Steady Stream of Viscous Fluid // Proceedings of the Bulgarian Academy of Sciences, 2022, vol. 75, no. 1, pp. 19-25, doi: 10.7546/CRABS.2022.01.03.

24. . Ahmed A., Wahid A., Manzoor R., Nadeem N., Ullah N., Kalsoom S. Flow Characteristics and Fluid Forces Reduction of Flow Past Two Tandem Cylinders in Presence of Attached Splitter Plate // Mathematical Problems in Engineering, 2021, pp. 1-16, doi: 10.1155/2021/4305731.

25. . Ai Y., Zhou L., Zhang H. High-order optimal mode decomposition analysis of the ground effect on flow past two tandem inclined plates // Physics of Fluids, 2023, vol. 35, 013611, doi: 10.1063/5.0133928.

26. . Reyes A., Soria J., Saffe A., Zambon M., Echegaray M., Suárez S., Rodriguez R., Mazza G., Fluidization of biomass: a correlation to assess the minimum fluidization velocity considering the influence of the sphericity factor // Particulate Science and Technology, 2021, vol. 39, no. 8, pp. 1020-1040, doi: 10.1080/02726351.2021.1879981.

27. . Bagheri G., Bonadonna C. On the drag of freely falling non-spherical particles, Powder Technology, 2016, vol. 301, pp. 526-544, doi: 10.1016/j.powtec.2016.06.015.

28. . Ganser G. H. A rational approach to drag prediction of spherical and nonspherical particles // Powder Technology, 1993, vol. 77, no. 2, pp. 143-152, doi: 10.1016/0032-5910(93)80051-B.

29. . Gidravlicheskie i teplovye osnovy raboty apparatov so stacionarnym i kipyashchim zernistym sloem / M. EH. Aehrov, O. M. Todes. – L.: Khimiya, 1968. – 510 s.

30. . Gorbis Z. R. Teploobmen i gidromekhanika dispersnykh skvoznykh potokov. – M.: Ehnergiya, 1970. – 424 s.

31. . Osnovy prakticheskoj teorii goreniya [Ucheb. posobie dlya ehnerg. spec. vuzov / V. V. Pomerancev, K. M. Aref’ev, D. B. Akhmedov i dr.]; Pod red. V. V. Pomeranceva. – 2-e izd., pererab. i dop. – Leningrad: Ehnergoatomizdat, Leningr. otd-nie, 1986. – 309 s.

32. . Baskakov, A. P. Skorostnoj bezokislitel’nyj nagrev i termicheskaya obrabotka v kipyashchem sloe: nauchnoe izdanie / A. P. Baskakov. – M.: Metallurgiya, 1968. – 223 s.

33. . Abdulally I., Voyles R. W., Lipal F. Multiply Fuel Firing Experience in a Circulating Fluidized Bed Boiler // Proceedings of the American Power Conference – Chicago (USA), 1992, vol. 2, pp 1-11.

34. . Johansson A. Solids flow pattern in circulating fluidized-bed boilers. Ph. D. Dissertation, Chalmers University of Technology. – 2005. ISBN 91-7291-662-1.

35. . Swieger В. Fluidized bed boilers achieve commercial status worldwide // Power, 1985, vol. 129, no. 2, pp. 1-16.

36. . Johnsson F., Leckner B. Vertical distribution of solids in a CFB-furnace // Proceedings of the 13-th International Conference on Fluidized-Bed Combustion, vol. 1, pp. 671-679.

37. . The New Romerbrucke FBC Combined Heat and Power Plant: Deutsche Babkock Information, 1990, 9 p., rep. no. 217.

38. . Ryabov G. A., Folomeev O. M. Issledovanie gidrodinamiki i massоobmena na ehksperimental’noj ustanovke s cirkulyacionnym kipyashchim sloem // Teploehnergetika. – 1998. – № 6, s. 8-12.

39. . Jiradilok V., Gidaspow D., Breault R. W., Shadle L. J., Guenther C., Shi S. Computation of turbulence and dispersion of cork in the NETL riser // Chemical Engineering Science, 2008, vol. 63, no. 8, pp. 2135-2148, doi: 10.1016/j.ces.2008.01.019.

40. . Ryabov G. A. Nauchnoe obosnovanie ispol’zovaniya tekhnologii szhiganiya tverdykh topliv v cirkuliruyushchem kipyashchem sloe // OAO «ITI» g. Moskva. – 2016.

41. . Kashyap M., Gidaspow D. Circulation of Geldart D type particles: Part II – Low solids fluxes: Measurements and computation under dilute conditions // Chemical Engineering Science, 2011, vol. 66. no. 8. pp. 1649-1670, doi: 10.1016/j.ces.2010.12.043.

42. . Brown B. W., Smoot L. D., Smith P. J., Hedman P. O. Measurement and prediction of entrained-flow gasification processes // AIChE Journal, 1988, vol. 34, no. 3, pp. 435-446, doi: 10.1002/aic.690340311.

43. . Halama S., Spliethoff H. Numerical simulation of entrained flow gasification: Reaction kinetics and char structure evolution // Fuel Processing Technology, 2015, vol. 138, pp. 314-324, doi: 10.1016/j.fuproc.2015.05.012.

44. . Watanabe H., Otaka, M. Numerical simulation of coal gasification in entrained flow coal gasifier // Fuel, 2006, vol. 85, no. 12-13, pp. 1935-1943, doi: 10.1016/j.fuel.2006.02.002.

45. . Slezak A., Kuhlman J. M., Shadle L. J., Spenik J., Shi S. CFD simulation of entrained-flow coal gasification: Coal particle density/sizefraction effects // Powder Technology, 2010, vol. 203, no. 1, pp. 98-108, doi: 10.1016/j.powtec.2010.03.029.

46. . Risberg M., Carlsson P., Gebart R. Numerical modeling of a 500 kW air-blown cyclone gasifier // Applied Thermal Engineering, 2015, vol. 90, pp. 694-702, doi: 10.1016/j.applthermaleng.2015.06.056.

47. . Teplovoi raschet kotlov [Tekst] /normativnyi metod/. Izdanie 3-e, pererabotannoe i dopolnennoe. – SPb.: NPO TSKTI, 1998. – 256 s.

48. . Grace J.R. Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions // The Canadian Journal of Chemical Engineering, 1986, vol. 64, no. 3, pp. 353-363.

49. . Geldart D. Types of gas fluidization // Powder Technology, 1973, vol. 5, no. 7, pp. 285-292, doi: 10.1016/0032-5910(73)80037-3.


Review

For citations:


Ershov M.I., Abaimov N.A., Osipov P.V., Tuponogov V.G., Alekseenko S.V., Ryzhkov A.F. Particle properties influence on the borderline between gas-dispersed flows with high and low particle concentrations. Alternative Energy and Ecology (ISJAEE). 2024;(10):110-128. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.110-128

Views: 23


ISSN 1608-8298 (Print)