

Assessment of the ability of microalgae to absorb carbon dioxide in various conditions using Сhlorella kessleri and other species
https://doi.org/10.15518/isjaee.2024.10.141-153
Abstract
Microalgae have long attracted the attention of researchers due to their ability to capture carbon from the atmosphere and convert it into organic compounds. Understanding how microalgae species respond to different conditions is important for the development of efficient biotechnological carbon dioxide capture systems that can be a sustainable solution in the context of global climate change. The study determined the effect of temperature, nutrient medium composition and aeration on the process of carbon dioxide absorption by Chlorella kessleri microalgae, and compared the carbon dioxide absorption rate with Chlamydomonas sp., Chloromonas typhlos. The optimal conditions for carbon dioxide absorption by Chlorella kessleri microalgae are: temperature –30 °С, illumination – 3000 lx, aeration, the presence of nitrogen compounds in the nutrient medium. Under such external conditions, the maximum carbon dioxide absorption rate (0,187 g · L-1 · day-1) is achieved by this type of microalgae. Lack of aeration and nitrogen deficiency negatively affect the process of CO2 absorption and reduce its absorption rate to 0,042 g · L-1 · day -1.
About the Authors
P. S. ShinkevichRussian Federation
Shinkevich Polina Sergeevna, engineer at the research Laboratory of «Industrial Ecology»
195251, St. Petersburg, st. Politekhnicheskaya, 29
K. A. Velmozhina
Russian Federation
Velmozhina Ksenia Alekseevna, engineer at the research Laboratory of «Industrial Ecology»
195251, St. Petersburg, st. Politekhnicheskaya, 29
N. A. Politaeva
Russian Federation
Politaeva Natalia Anatolevna, professor at the Higher School of Hydraulic and Energy Construction
195251, St. Petersburg, st. Politekhnicheskaya, 29
References
1. . Climate Change 2021: The Physical Science Basis - IPCC https://www.ipcc.ch/report/ar6/wg1/
2. . Han F., Zhang S., Yang W. & Zhang J. (2020). Utilization of microalgae for carbon dioxide capture and biomass production: A review // Journal of Environmental Management, 263, 110388. https://doi.org/10.1016/j.jenvman.2020.110388
3. . Mata T. M., Martins A. A. & Caetano N. S. (2010). Microalgae for biodiesel production and other applications: A review // Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
4. . Xia L., Rong J., Yang H. & He Q. (2021). Optimized photobioreactor conditions for CO2 absorption and biomass production in Chlorella kessleri // Algal Research, 54, 102234. https://doi.org/10.1016/j.algal.2021.102234
5. . De Morais M. G., Costa, J. A. V. Isolation and Selection of Microalgae from Coal Fired Thermoelectric Power Plant for Biofixation of Carbon Dioxide // Energy Convers. Manag. – 2007, 48, 2169-2173.
6. . Zieliński M., Dębowski M., Kazimierowicz J., Świca I. Microalgal Carbon Dioxide (CO2) Capture and Utilization from the European Union Perspective // Energies, 2023, 16, 1446. https://doi.org/10.3390/en16031446
7. . Livansky K., Doucha J. Utilization of Carbon Dioxide by Chlorella Kessleri in Outdoor Open Thin-Layer Culture Units // Algological Studies. – 2005. – No. 116 (1). – P. 201-212. DOI: 10.1127/18641318/2005/0116-0201.
8. . S. Kasiri, A. Ulrich, V. Prasad Optimization of CO2 fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor // Bioresour. Technol., 194 (2015), pp. 144-155, 10.1016/j.biortech.2015.07.017
9. . Politaeva N., Ilin I., Velmozhina K., Shinkevich P. Carbon Dioxide Utilization Using Chlorella Microalgae // Environments. – 2023, 10, 109. https://doi.org/10.3390/environments10070109
10. . Ugwu C. U., Aoyagi H. & Uchiyama H. (2008). Photobioreactors for mass cultivation of algae // Bioresource Technology, 99(10), 4021-4028. https://doi.org/10.1016/j.biortech.2007.01.046
11. . Singh A. & Thakur I. S. (2015). CO2 sequestration in microalgae: A step towards sustainability and energy efficiency // Biofuels, 6(3), 141-151. https://doi.org/10.1080/17597269.2015.1020984
12. . Chisti Y. (2007). Biodiesel from microalgae // Biotechnology Advances, 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
13. . Rodolfi L., Zittelli G. C., Bassi N., Padovani G., Biondi N., Bonini G. & Tredici M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor // Biotechnology and Bioengineering, 102(1), 100-112. https://doi.org/10.1002/bit.22033
14. . Benemann J. R. (2013). Microalgae for biofuels and animal feeds // Biotechnology and Bioengineering, 110(9), 2311-2315. https://doi.org/10.1002/bit.24984
15. . Ördög V., Stirk W. A., Bálint P., Aremu A. O., Okem A., Lovász C., Molnár Z., van Staden J. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains // Algal Res. – 2016, 16, 141-149.
16. . Xu N. J., Zhang X. C. Effect of temperature, light intensity and pH on the growth and fatty acid compositions of Ellipsoidion sp. // J. Ocean Univ. Qingdao, 2001, 31, 541-547.
17. . Pueyo J., Alfonso M., Andre C., Picorel R. Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium // Biochim. Biophys. Acta 2002, 1554, 29-35.
18. . Al Jabri H., Taleb A., Touchard R., Saadaoui I., Goetz V., Pruvost J. Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-Temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis QU130 // Appl. Sci. 2021, 11, 3799.
19. . Vuppaladadiyam A. K., Yao J. G., Florin N., George A., Wang X., Labeeuw L., Jiang Y., Davis R. W., Abbas A., Ralph P. et al. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization // ChemSusChem. – 2018, 11, 334-355.
20. . Aci G., Matito-martos I., Sepúlveda C., Cintia G., Perez-carbajo J., Ania C. Potential of CO2 capture from flue gases by physicochemical and biological methods: A comparative study // Chem. Eng. J. – 2021, 417, 1-10.
21. . Yun Y., Lee S. B., Park J. M., Lee C., Yang J. Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients // J. Chem. Technol. Biotechnol. – 1997, 69, 451-455.
22. . Singh S. P., Singh P. Effect of CO2 concentration on algal growth: A review // Renew. Sustain. Energy Rev. – 2014, 38, 172-179.
23. . Zhou W., Wang J., Chen P., Ji C., Kang Q., Lu B., Li K., Liu J., Ruan R. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain // Energy Rev. 2017, 76, 1163-1175.
24. . Cheah Y. W., Show Loke P., Chang J., Ling C. T., Juan C. J. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae // Bioresour. Technol. – 2015, 184, 190-201.
25. . Liang F., Lindberg P., Lindblad P. Sustainable Energy & Fuels enhanced growth and productivity // Sustain. Energy Fuels. – 2018, 2, 2583-2600.
26. . Aro E., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover // Biochim. Biophys. Acta. – 1993, 1143, 113-134.
27. . Pniewski F., Piasecka I. Photoacclimation to constant and changing light conditions in a benthic diatom // Fron. Mar. Sci. – 2020, 7, 1-12.
28. . De Oliveira C. Y. B., Viegas, T. L., Fernanda M., Fracalossi D. M., Lopes R. G., Derner R. B. Effect of trace metals on growth performance and accumulation of lipids, proteins, and carbohydrates on the green microalga Scenedesmus obliquus // Aquac. Int. – 2020, 28, 1435-1444.
29. . Болдина, О. Н. Цитологическое исследование Chloromonas typhlos (Chlamydomonadaceae, Chlorophyta) с Северо-Запада России / О. Н. Болдина // Новости систематики низших растений. – 2017. – Т. 51. – С. 5-11. – DOI 10.31111/nsnr/2017.51.5.
30. . Культивирование и использование микроводорослей Chlorella и высших водных растений ряска Lemna [Текст]: монография / Политаева Н. А., Смятская Ю. А., Кузнецова Т. А. [и др.]; Министерство образования и науки Российской Федерации, СанктПетербургский политехнический университет Петра Великого. – Саратов: Наука, 2017. – 124 с.
Review
For citations:
Shinkevich P.S., Velmozhina K.A., Politaeva N.A. Assessment of the ability of microalgae to absorb carbon dioxide in various conditions using Сhlorella kessleri and other species. Alternative Energy and Ecology (ISJAEE). 2024;(10):141-153. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.141-153