Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a technological scheme for carbon dioxide utilization and biohydrogen production using microalgae

https://doi.org/10.15518/isjaee.2024.10.154-166

Abstract

This work is dedicated to an analytical review of various aspects related to carbon dioxide utilization. The study examines different methods of carbon dioxide capture currently available. The most promising method of carbon dioxide utilization is the use of microalgae. This is primarily due to the cultivation conditions of microalgae, particularly their ability to grow in various environments that do not compete with agricultural crops. Additionally, the following advantages of microalgae in the context of carbon dioxide utilization are highlighted: rapid biomass accumulation, species diversity, oxygen release during photosynthesis, and high absorption capacity. It has been established that certain factors influence the carbon dioxide utilization process, including photoperiod, light intensity, cultivation temperature, medium acidity, concentration of supplied carbon dioxide, and various additives to the nutrient medium. As a result, optimal conditions were determined for most types of microalgae, under which the carbon dioxide capture process is most efficient. The optimal conditions for effective CO2 capture by microalgae are as follows: maintaining a photoperiod of 16 hours of light/8 hours of darkness, light intensity of approximately 5405 lux, temperature range of 20 °C-25 °C, medium acidity between 6 and 8,3, carbon dioxide concentrations up to 5%, and the addition of urea and sodium bicarbonate to the nutrient medium. The practical significance of this work lies in the potential for implementing this technology in various industries across all energy sectors in the Russian Federation. It is proposed to use the absorption capacity of microalgae to reduce the environmental impact of thermal energy carriers. Further research in this area will enable the development of an efficient carbon dioxide capture system that produces a value-added product (microalgal biomass), making this research economically attractive for continued investigation.

About the Authors

P. S. Shinkevic
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Shinkevich Polina Sergeevna, engineer at the research Laboratory of «Industrial Ecology»

195251, St. Petersburg, st. Politekhnicheskaya, 29



K. A. Velmozhina
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Velmozhina Ksenia Alekseevna, engineer at the research Laboratory of «Industrial Ecology»

195251, St. Petersburg, st. Politekhnicheskaya, 29



N. A. Politaeva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Politaeva Natalia Anatolevna, professor at the Higher School of Hydraulic and Energy Construction

195251, St. Petersburg, st. Politekhnicheskaya, 29



A. N. Chusov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Chusov Alexander Nikolaevich, professor at the Higher School of
Hydraulic and Energy Construction

195251, St. Petersburg, st. Politekhnicheskaya, 29



References

1. . Lam M. K., Lee K. T., Mohamed A. R. Current status and challenges on microalgae-based carbon capture // Int. J. Greenh. Gas Control. – 2012. – 10. – P. 456-469. DOI: 10.1016/j.ijggc.2012.07.010.

2. . Wu L. F., Chen P. C., Lee C. M. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae // Int. Biodeterior. Biodegrad. – 2013. – Vol. 85. – P. 506-510. DOI: 10.1016/j.ibiod.2013.05.016.

3. . Vasileva-Tcankova R. Global Ecological Problems of Modern Society // Acta Scientifica Naturalis. – 2022. – Vol. 9. – P. 63-86. DOI: 10.2478/asn-2022-0014.

4. . Abdul Latif N. S., Ong M. Y., Nomanbhay S., Salman B., Show P. Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA) // Bioengineered. – 2020. – Vol. 11, № 1. – P. 154-164. DOI: 10.1080/21655979.2020.1718471.

5. . Gegg P., Wells V. UK macro-algae biofuels: a strategic management review and future research agenda // J. Mar. Sci. Eng. – 2017. – Vol. 5, iss. 3. – P. 32. DOI: 10.3390/jmse5030032.

6. . Nomanbhay S., Salman B., Hussain R., Ong M. Microwave pyrolysis of lignocellulosic biomass – a contribution to power Africa // Energy Sustain Soc. – 2017. – Vol. 7, iss. 1. – P. 1-24. DOI: 10.1186/s13705-017-0126-z.

7. . Liu L., Mei Q., Jia W. A flexible diesel spray model for advanced injection strategy // Fuel. – 2022. – Vol. 314. – P. 122784. DOI: 10.1016/j.fuel.2021.122784.

8. . Wang Y., Zhou X., Liu L. Feasibility study of hydrogen jet flame ignition of ammonia fuel in marine low speed engine // Int. J. Hydrogen Energy. – 2023. – Vol. 48, iss. 1. – P. 327-336. DOI: 10.1016/j.ijhydene.2022.09.198.

9. . Udaypal Goswami R. K., Mehariya S., Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives // Environ Res. – 2024. – Vol. 249. – P. 118397. DOI: 10.1016/j.envres.2024.118397.

10. . Aresta M., Dibenedetto A. The CO2 Revolution. In: The Carbon Dioxide Revolution Challenges and Perspectives for a Global Society. Switzerland: Springer Nature. – 2021b. – 219-228 p. DOI: 10.1007/978-3-03059061-1_12.

11. . Bao J., Lu W. H., Zhao J., Bi X. T. Greenhouses for CO2 sequestration from atmosphere // Carbon Resour. Convers. – 2018. – Vol. 1. – P. 183-190. DOI: 10.1016/j.crcon.2018.08.002.

12. . Abdul Latif N. S., Ong M. Y., Nomanbhay S. Hydrothermal liquefaction of Malaysian’s algal biomass for high-quality bio-oil production // Eng Life Sci. – 2019. – Vol. 19, iss. 4. – P. 246-269. DOI: 10.1002/elsc.201800144.

13. . Posen D., Paulina J., Amy E. L., Griffin W. M. Greenhouse gas mitigation for U. S. plastics production: energy first, feedstocks later // Environ Res Lett. – 2017. – Vol. 12, iss. 3. – P. 34024. DOI: 10.1088/1748-9326/aa60a7.

14. . Escobar N., Haddad S., Britz W. Economic and environmental implications of a target for bioplastics consumption: A CGE analysis. In Proceedings of the International Association of Agricultural Economists Conference, Vancouver, BC, Canada, 28 July – 2 August 2018. – 2018. – P. 1-16. DOI: 10.22004/ag.econ.277240.

15. . Aresta M., Dibenedetto A. The Carbon Dioxide Revolution Challenges and Perspectives for a Global Society, 1st ed. Switzerland: Springer Nature. – 2021a. – 277 p.

16. . Aresta M., Dibenedetto A. Carbon Recycling Through CO2-Conversion for Stepping Toward a Cyclic-C Economy. A Perspective // Front. Energy Res. – 2020. – Vol. 8. – P. 159. DOI: 10.3389/fenrg.2020.00159.

17. . Wang Z., Wang Q., Jia C., Bai J. Thermal evolution of chemical structure and mechanism of oil sands bitumen // Energy. – 2022. – Vol. 244, part B. – P. 1233190. DOI: 10.1016/j.energy.2022.123190.

18. . Xue Y., Yang T., Liu X., Cao Z., Gu J., Wang Y. Enabling efficient and economical degradation of PCDD/ Fs in MSWIFA via catalysis and dechlorination effect of EMR in synergistic thermal treatment // Chemosphere. – 2023. – Vol. 342. – P. 140164. DOI: 10.1016/j.chemosphere.2023.140164.

19. . Ahmadi P., Dincer I., Rosen M. A. Development and assessment of an integrated biomass-based multi-generation energy system // Energy. – 2013. – Vol. 56. – P. 155-166. DOI: 10.1016/j.energy.2013.04.024.

20. . Gao S., Zhang Q., Su X., Wu X., Zhang X. G., Guo Y., Li Z., Wei J., Wang H., Zhang S., Wang J. Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction // J. Am. Chem. Soc. – 2023. – Vol. 145, iss. 17. – P. 9520-9529. DOI: 10.1021/jacs.2c11146.

21. . Liu C., Hsu C., Agrawal M. K., Zhang J., Ahmad S. F., Seikh A. H., Mohanavel V., Chauhdary S. T., Chi F. Design and thermo-enviro-economic analyses of an innovative environmentally friendly trigeneration process fueled by biomass feedstock integrated with a post-combustion CO2 capture unit // Journal of Cleaner Production. – 2024. – Vol. 443. – P. 141137. DOI: 10.1016/j.jclepro.2024.141137.

22. . Kan Y., Kan H., Bai Y., Zhang S., Gao Z. Effective and environmentally safe self-antimildew strategy to simultaneously improve the mildew and water resistances of soybean flour-based adhesives // J. Clean. Prod. – 2023. – Vol. 392, iss. 5. – P. 136319. DOI: 10.1016/j.jclepro.2023.136319.

23. . Vale M. A., Ferreira A., Pires J. C. M., Gonçalves G. A. L. CO2 capture using microalgae. In: Advances in Carbon Capture: Methods, Technologies and Applications // Elsevier. – 2022. – 381-405 p. DOI: 10.1016/B978-0-12-819657- 1.00017-7.

24. . Yulia F., Sofianita R., Prayogo K., Nasruddin N. Optimization of post combustion CO2 absorption system monoethanolamine (MEA) based for 320 MW coalfired power plant application – Exergy and exergoenvironmental analysis // Case Stud. Therm. Eng. – 2021. – Vol. 26. – P. 101093. DOI: 10.1016/j.csite.2021.101093.

25. . Laribi S., Dubois L., De Weireld G., Thomas D. Study of the post-combustion CO2 capture process by absorption-regeneration using amine solvents applied to cement plant flue gases with high CO2 contents // Int. J. Greenh. Gas Control. – 2019. – Vol. 90. – P. 102799. DOI: 10.1016/j.ijggc.2019.102799.

26. . Dubois L., Thomas D. Comparison of various configurations of the absorption regeneration process using different solvents for the post-combustion CO2 capture applied to cement plant flue gases // Int. J. Greenh. Gas Control. – 2018. – Vol. 69. – P. 20-35. DOI: 10.1016/j.ijggc.2017.12.004.

27. . An X., Wang P., Ma X., Du X., Hao X., Yang Z., Guan G. Application of ionic liquids in CO2 capture and electrochemical reduction: A review // Carbon Resour. Convers. – 2023. – Vol. 6, iss. 2. – P. 85-97. DOI: 10.1016/j.crcon.2023.02.003.

28. . Chang W., Li Y., Qu Y., Liu Y., Zhang G., Zhao Y., Liu S. Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA // Renew. Energy. – 2022. – Vol. 187. – P. 819-828. DOI: 10.1016/j.renene.2022.01.108.

29. . Мамедов Т. У., Мамедзаде П. У. Роль перехода к чистой энергетике в мировой практике: снижение уровня выбросов, утилизация и хранение углеводорода // Геэкономика энергетики. – 2023. – Т. 4. – С. 143-161.

30. . Nguyen L. N., Vu M. T., Vu H. P., Johir Md. A. H., Labeeuw L., Ralph P. J., Nghiem L. D. Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization // Critical Reviews in Environmental Science and Technology. – 2023. – Vol. 53, iss. 2. – P. 216-238. DOI: 10.1080/10643389.2022.2047141.

31. . Tilaki R., Jafarsalehi M. Carbon dioxide capture from combustion gases in residential building by microalgae cultivation // Journal of Air Pollution and Health. – 2023. – Vol. 8, iss. 1. – P. 13-22. DOI: 10.18502/japh.v8i1.12026.

32. . Morales M., S´anchez L., Revah S. The impact of environmental factors on CO2 fixation by microalgae // FEMS Microbiol. Lett. – 2018. – Vol. 365, iss. 3. DOI: 10.1093/femsle/fnx262.

33. . Cardias B. B., Morais M. G. de, Costa J. A. V. CO2 conversion by the integration of biological and chemical methods: spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition // Bioresour. Technol. – 2018. – Vol. 267. – P. 77-83. DOI: 10.1016/j.biortech.2018.07.031.

34. . He Y., Lian J., Wang L., Tan L., Khan F., Li Y., Wang H., Rebours C., Han D., Hu Q. Recovery of nutrients from aquaculture wastewater: effects of light quality on the growth, biochemical composition, and nutrient removal of Chlorella sorokiniana // Algal Res. – 2023. – Vol. 69. – P. 102965. DOI: 10.1016/j.algal.2022.102965.

35. . Goswami R. K., Agrawal K., Upadhyaya H. M., Gupta V. K., Verma P. Microalgae conversion to alternative energy, operating environment and economic footprint: an influential approach towards energy conversion, and management // Energy Convers. Manag. – 2022. – Vol. 269. – P. 116118. DOI: 10.1016/j.enconman.2022.116118.

36. . Hartulistiyoso E., Farobie O., Anis L. A., Syaftika N., Bayu A., Amrullah A., Moheimani N. R., Karnjanakom S., Matsumura Y. Co-production of hydrochar and bioactive compounds from Ulva lactuca via a hydrothermal process // Carbon Resour. Convers. – 2023. – 7, iss. 1. – P. 100183. DOI: 10.1016/j.crcon.2023.05.002.

37. . Thanigaivel S., Vickram S., Dey N., Gulothungan G., Subbaiya R., Govarthanan M., Karmegam N., Kim W. The urge of algal biomass-based fuels for environmental sustainability against a steady tide of biofuel conflict analysis: is third-generation algal biorefinery a boon? // Fuel. – 2022. – Vol. 317. – P. 123494. DOI: 10.1016/j.fuel.2022.123494.

38. . Зибарев Н. В., Политаева Н. А., Андрианова М. Ю. Использование микроводорослей Chlorella sorokiniana (Chlorellaceae, Chlorellales) для очистки сточных вод пивоваренной промышленности // Поволжский экологический журнал. – 2021. – Т. 3. – С. 262-271.

39. . Hu X., Zhou J., Liu G., Gui B. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater // J. Environ. Sci. – 2016. – Vol. 46. – P. 83-91. DOI: 10.1016/j.jes.2015.08.030.

40. . Koukoumaki D. I., Tsouko E., Papanikolaou S., Ioannou Z., Diamantopoulou P., Sarris D. Recent advances in the production of single cell protein from renewable resources and applications // Carbon Resour. Convers. – 2023. – Vol. 7, iss. 2. – P. 100195. DOI: 10.1016/j.crcon.2023.07.004.

41. . Banerjee I., Dutta S., Pohrmen C.B., Verma R., Singh D. Microalgae-based carbon sequestration to mitigate climate change and application of nanomaterials in algal biorefinery // Octa. J. Biosci. – 2020. – Vol. 8, iss. 2. – P. 129-136.

42. . Prasad R., Gupta S. K., Shabnam N., Oliveira C. Y. B., Nema A. K., Ansari F. A., Bux F. Role of microalgae in global CO2 sequestration: physiological mechanism, recent development, challenges, and future prospective // Sustainability. – 2021. – Vol. 13, iss. 23. – P. 13061. DOI: 10.3390/su132313061.

43. . Zhao B., Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review // Renew. Sust. Energ. Rev. – 2014. – Vol. 31. – P. 121-132. DOI: 10.1016/j.rser.2013.11.054.

44. . Jacob-Lopes E., Scoparo C. H. G., Lacerda L. M. C. F., Franco T. T. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors // Chem. Eng. Process: Process Intensif. – 2009. – Vol. 48. – P. 306-310. DOI: 10.1016/j.cep.2008.04.007.

45. . Wahidin S., Idris A., Shaleh S. R. M. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. // Bioresour. Technol. – 2013. – Vol. 129. – P. 7-11. DOI: 10.1016/j.biortech.2012.11.032.

46. . Khoeyi Z. A., Seyfabadi J., Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris // Aquac. Int. – 2012. – Vol. 20. – P. 41-49. DOI: 10.1007/s10499-011-9440-1.

47. . Meseck S. L., Alix J. H., Wikfors G. H. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429) // Aquaculture. – 2005. – Vol. 246, iss. 1-4. – P. 393-404. DOI: 10.1016/j.aquaculture.2005.02.034.

48. . Gatamaneni B. L., Orsat V., Lefsrud M. Factors affecting growth of various microalgal species // Environ. Eng. Sci. – 2018. – Vol. 35. – P. 1037-1048. DOI: 10.1089/ees.2017.0521.

49. . Banerjee S., Ray A., Das D. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework // Sci. Total Environ. – 2021. – Vol. 762. – P. 143080. DOI: 10.1016/j.scitotenv.2020.143080.

50. . Wu L. F., Chen P. C., Lee C. M. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae // Int. Biodeterior. Biodegrad. – 2013. – Vol. 85. – P. 506-510. DOI: 10.1016/j.ibiod.2013.05.016.

51. . Wei L., Huang X., Huang Z. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources // Chin. J. Oceanol. Limnol. – 2015. – Vol. 33. – P. 99-106. DOI: 10.1007/s00343-015-3346-0.

52. . Salvucci M. E., Crafts-Brandner S. J. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis // Physiol. Plantarum. – 2004. – Vol. 120, iss. 2. – P. 179-186. DOI: 10.1111/j.0031-9317.2004.0173.x.

53. . Bartley M. L., Boeing W. J., Dungan B. N., Holguin F. O., Schaub T. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms // J. Appl. Phycol. – 2014. – Vol. 26. – P. 1431-1437. DOI: 10.1007/s10811-0130177-2.

54. . Kajiwara S., Yamada H., Ohkuni N., Ohtaguchi K. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942 // Energ. Convers. Manag. – 1997. – Vol. 38. – P. 529-532. DOI: 10.1016/S01968904(96)00322-6.

55. . Anjos M., Fernandes B. D., Vicente A. A., Teixeira J. A., Dragone G. Optimization of CO2 bio-mitigation by Chlorella vulgaris // Bioresource technology. – 2013. – Vol. 139. – P. 149-154. DOI: 10.1016/j.biortech.2013.04.032.

56. . Zhu F. Y., Chen M. X., Chan W. L., Yang F., Tian Y., Song T., Xie L. J., Zhou Y., Xiao S., Zhang J., Lo C. SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses // J. Proteonomics. – 2018. – Vol. 187. – P. 161-170. DOI: 10.1016/j.jprot.2018.07.014.

57. . Prabakaran P., Ravindran A. D. Influence of different Carbon and Nitrogen sources on growth and CO2 fixation of microalgae // Adv. Appl. Sci. Res. – 2012. – Vol. 3. – P. 1714-1717.

58. . Kasiri S., Abdulsalam S., Ulrich A., Prasad V. Optimization of CO2 fixation by Chlorella kessleri using response surface methodology // Chem. Eng. Sci. – 2015. – Vol. 127. – P. 31-39. DOI: 10.1016/j.ces.2015.01.008.

59. . Lam M. K., Lee K. T. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production // Int. J. Greenh. Gas Control. – 2013. – Vol. 14. – P. 169-176. DOI: 10.1016/j.ijggc.2013.01.016.

60. . Энергетика в цифрах: Росстат подвел итоги 2023 года // Энергетика и промышленность России: [сайт]. – 2024. – URL: https://www.eprussia.ru/market-and-analytics/7123772.htm (дата обращения: 15.04.2024).

61. . Веселов Ф. В. Энергоэкономическая оценка стратегий повышения энергетической эффективности теплоэнергетики России / Ф. В. Веселов, И. В. Ерохина, А. С. Макарова [и др.]. – Текст: непосредственный // Теплоэнергетика: ежемесячный теоретический и научно-практический журнал / Российская академия наук. Российское научно-техническое общество энергетиков и электротехников. – Москва, 2021. – № 12. – С. 20-32 (Общие вопросы энергетики). ISSN 00403636. Библиогр.: с. 31-32.

62. . Vdovychenko A., Golub N. The effect of gas emissions components on the growth of Chlorella vulgaris microalgae // Visnyk of Lviv University. Biological series. – 2022. – № 3. – P. 3-14. 10.30970/vlubs.2022.86.01.

63. . С. П. Филиппов. Переход к углеродно-нейтральной экономике: возможности и пределы, актуальные задачи // Теплоэнергетика. – 2024. – № 1. – C. 21-40. DOI: 10.56304/S004036362401003X.

64. . Filippov S. P., Zhdaneev O. V. Opportunities for the Application of Carbon Dioxide Capture and Storage Technologies in Case of Global Economy Decarbonization (Review). Therm. Eng. 69, 637-652 (2022). https://doi.org/10.1134/S0040601522090014.

65. . В. В. Клименко, А. В. Клименко, А. Г. Терешин, О. В. Микушина. Сможет ли энергопереход остановить глобальное потепление и почему так сильно ошибаются климатические прогнозы? // Теплоэнергетика. – 2022. – № 3. – С. 5-19. https://doi.org/10.1134/S0040363622030067.

66. . А. В. Клименко, В. В. Клименко, А. Г. Терешин, Е. В. Федотова. Влияние изменений климата на производство, распределение и потребление энергии в России // Теплоэнергетика. – 2018. – № 5. – С. 5-16. https://doi.org/10.1134/S0040363618050053.

67. . С. П. Филиппов. Экономические характеристики технологий улавливания и захоронения диоксида углерода (обзор) // Теплоэнергетика. – 2022. – № 10. – С. 17-31. DOI: 10.56304/S0040363622100022.

68. . Makarov A. A. Scenarios and Price of the Transition to Low-Carbon Energy in Russia. Therm. Eng. 69, 727-737 (2022). https://doi.org/10.1134/S0040601522100056.


Review

For citations:


Shinkevic P.S., Velmozhina K.A., Politaeva N.A., Chusov A.N. Development of a technological scheme for carbon dioxide utilization and biohydrogen production using microalgae. Alternative Energy and Ecology (ISJAEE). 2024;(10):154-166. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.154-166

Views: 78


ISSN 1608-8298 (Print)