

Комплексная оценка эффективности системы производства и транспортировки водорода
https://doi.org/10.15518/isjaee.2024.10.167-199
Abstract
На основе стратегии энергетического развития России до 2035 г. в статье обосновывается перспектива развития атомной энергетики, согласно которой атомные станции планируется принуждать к разгрузке в диапазоне до 50% от номинальной мощности во время участия в регулировании суточной неравномерности электрической нагрузки. Кроме этого, атомные станции будут привлекаться к первичному регулированию частоты, что также связано с разгрузочным режимом работы АЭС. Все эти обстоятельства вынуждают искать способы обеспечения АЭС базисной нагрузкой. Наряду с ГАЭС в статье рассмотрен альтернативный вариант в виде использования водородного комплекса на основе электролизного производства водорода, что удовлетворяет концепции безуглеродного его получения. В статье приводится мировая динамика по внедрению электролизеров, а, кроме этого, по увеличению доли электролизного водорода, полученного на базе АЭС. Водородный комплекс в этом случае является средством обеспечения АЭС базисной нагрузкой, что предполагает потребление невостребованной электроэнергии по себестоимости. Это позволяет производить водород по конкурентоспособной цене в сравнении с отдельными производителями на рынке. Полученный водород пользуется огромным спросом как полезный продукт в ряде отраслей промышленности. В статье приводятся примеры потребления водорода в различных областях потребления в зависимости от чистоты с учетом требований ГОСТа. Ряд отраслей-потребителей используют водород особой степени чистоты, т. е., более 99,999% об. В этой связи учтена дополнительная очистка водорода на палладиевых мембранах. Произведена комплексная оценка эффективности системы производства водорода с учетом его дополнительной очистки и доставки потребителю различными способами, освоенными и востребованными мировой практикой. Выполнено сравнение способов доставки водорода до потребителя в сравнении с получением водорода электролизом на месте потребления. Выполнено сравнение по критерию чистого дисконтированного дохода для варианта сторонних потребителей, не имеющих собственного производства водорода.
About the Authors
R. Z. AminovRussian Federation
Aminov Rashid Zarifovich, Head of the Department of Energy
Problems, Professor, doctor of technical science
410054, Saratov, st. Politekhnicheskaya, 77
Scopus Author ID: 7006689108
Research ID: O-3305-2014
A. N. Bairamov
Russian Federation
Bairamov Artem Nicolaevich, senior researcher, doctor of technical science
410054, Saratov, st. Politekhnicheskaya, 77
Scopus Author ID: 35224451800
Research ID: P-6565-2017
S. P Filippov
Russian Federation
Filippov Sergey Petrovich, director, academician, doctor of technical science
Scopus Author ID: 7006004634
Research ID: S-5974-2017
References
1. . Golovin R. A. Strategy of the State Corporation Rosatom / R. A. Golovin. – M. – 2018.
2. . Organization standard of JSC SO UES. Norms of participation of power units of nuclear power plants in the standardized primary frequency regulation. – Introduced. 19.08.2013. – JSC SO UES, 2013.
3. . Energy strategy of Russia for the period up to 2035 / Government of the Russian Federation. – Moscow, 2020. – 79 p.
4. . Aminov R. Z. Assessment of the systemic efficiency of the atomic-hydrogen energy complex / R. Z. Aminov, A. N. Bayramov, M. V. Garievsky // Thermal Power Engineering. – 2019. – No. 3. – P. 57-71.
5. . Bayramov A. N. Evaluation of the efficiency of promising options for combining NPPs with a hydrogen complex // Energetik. – 2023. – No. 2. – P. 8-13.
6. . Filippov S. P., Golodnitsky A., Kashin A. Fuel cells and hydrogen energy // Energy policy. – 2020. – No. 11/153. – P. 29-39.
7. . Aminov R. Z. Current state and prospects for hydrogen production at NPPs / R. Z. Aminov, A. N. Bayramov // Thermal power engineering. – 2021. – No. 9. – P. 3-13.
8. . Aminov R. Z. Combining hydrogen energy cycles with nuclear power plants / R. Z. Aminov, A. N. Bayramov. – M.: Nauka, 2016. – 254 p.
9. . Christopher Yanga, Joan Ogdena. Determining the lowest-cost hydrogen delivery mode // International Journal of Hydrogen Energy. – 2006. – Vol. 32. – Pr. 268-286.
10. . Winston Cheng, Y. Frank Cheng. A technoeconomic study of the strategy for hydrogen transport by pipelines in Canada // Journal of Pipeline Science and Engineering. – In Press. – https://doi.org/10.1016/j.jpse.2023.100112.
11. . F. Oney. Evaluation of pipeline transportation of hydrogen and natural gas mixtures / F. Oney, T. N. Veziroglu and Z. Dulger // Int. J. Hydrogen Energy. – 1994. – Vol. 19. – №. 10. – Рp. 813-822.
12. . Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling / Krishna Reddi [et al.] // International Journal of Hydrogen Energy. – 2018. – Volume 43. – Issue 9. – Pages 4428-4438.
13. . Thermo-economic comparison of hydrogen and hydro-methane produced from hydroelectric energy for land transportation / D. Bellotti [et al.] // International Journal of Hydrogen Energy. – 2015. – Volume 40. – Issue 6. – Pages 2433-2444.
14. . Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks / Amin Lahnaoui [et al.] // International Journal of Hydrogen Energy. – 2019. – Volume 44. – Issue 35. – Pages 19302-19312.
15. . Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation / Marcel Otto [et al.] // Journal of Energy Storage. – 2022. – Volume 55. – Part D. – 105714.
16. . Bongjin Gim A transportation model approach for constructing the cost effective central hydrogen supply system in Korea / Bongjin Gim, Kyung Jin Boo, Sang Min Cho // International Journal of Hydrogen Energy. – 2012. – Vol. 37. – Pages 1162-1172.
17. . Amin Lahnaoui Building an optimal hydrogen transportation system for mobility, focus on minimizing the cost of transportation via truck / Amin Lahnaoui, Cristina Wulf, Didier Dalmazzone // Energy Procedia. – 2017. – Vol. 142. – Pages 2072-2079.
18. . Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects / Andrzej Witkowski [et al.] // Energy. – 2017. – doi: 10.1016/j.energy.2017.05.141.
19. . Hydrogen and ethanol: Production, storage, and transportation // International Journal of Hydrogen Energy. – 2021. – Volume 46. – Issue 54. – Pages 27330-27348.
20. . Hydrogen transportation using liquid organic hydrides: A comprehensive life cycle assessment / Shahana Bano [et al.] // Journal of Cleaner Production. – 2018. doi: 10.1016/j.jclepro.2018.02.213.
21. . Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment / G. Di Lullo [et al.] // International Journal of Hydrogen Energy. – 2022. – Volume 47. – Issue 83. – Pages 35293-35319.
22. . Hydrogen supply chain and challenges in largescale LH2 storage and transportation / Ram R. Ratnakar [et al.] // International Journal of Hydrogen Energy. – 2021. – Volume 46. – Issue 47. – Pages 24149-24168.
23. . Life cycle greenhouse emissions of compressed natural gas–hydrogen mixtures for transportation in Argentina / P. Martı´nez [et al.] // International Journal of Hydrogen Energy. – 2010. – Volume 35. – Issue 11. – Pages 5793-5798.
24. . Liquid organic hydrogen carriers for transportation and storage of renewable energy – Review and discussion / Päivi T. Aakko-Saksaa [et al.] // Journal of Power Sources. – 2018. – Volume 396. – Pages 803823.
25. . Alekseeva O. K. Hydrogen transportation / O. K. Alekseeva, S. I. Kozlov, V. N. Fateev // Alternative fuel transport. – 2011. – No. 3(21). – P. 18-24.
26. . Sitas V. I. Long-distance transport of hydrogen via main gas pipelines / V. I. Sitas, S. N. Yarunin // Industrial Energy. – 2021. – No. 9. – P. 52-58.
27. . Golunov N. N. Transportation of hydrogen through gas pipelines in the form of a methane-hydrogen mixture / N. N. Golunov, M. V. Lurye, I. T. Musailov // Territory of oil and gas. – 2021. – No. 1-2. – P. 74-82.
28. . Application of metal hydride technology for hydrogen storage and transportation / A. N. Troyan [et al.] // Current issues in energy. – 2022. – No. 1. – Vol. 4. – P. 39-51.
29. . Makaryan I. A.Hydrogen Storage Using Liquid Organic Carriers (Review) / I. A. Makaryan, I. V. Sedov, A. L. Maksimov // Journal of Applied Chemistry. – 2020. – Vol. 93. – Issue. 12. – P. 1716-1733.
30. . Aminov R. Z. Evaluation of the Efficiency of Hydrogen Production Based on Off-Peak Electricity from Nuclear Power Plants / R. Z. Aminov, A. N. Bayramov // Alternative Energy and Ecology: International Scientific Journal. – 2016. – No. 5-6. – P. 59-70.
31. . Filippov S. P., Yaroslavtsev A. B. Hydrogen Energy: Development Prospects and Materials // Uspekhi Chemii. – 2021. – No. 90(6). – P. 627-643.
32. . Advanced alkaline water electrolysis using inorganic membrane elec-trolyte (I.M.E.) technology / H. Vandenborre [et al.] // International Journal of Hydrogen Energy. – 1985. – Volume 10. – Issue 11. – Pages 719-726.
33. . The investment costs of electrolysis – A comparison of cost studies from the past 30 years / Sayed M. Saba [et al.] // International Journal of Hydrogen Energy. – 2017. – Article in press.
34. . Kulikov S. The first wants to become the main one / S. Kulikov // Expert. – 2019. – No. 48. (1143). [Electronic resource]. Access mode: https://expert.ru/expert/2019/48/pervyij-hochet-stat-glavnyim/
35. . Brusnitsyn A. Two scenarios for the development of hydrogen technologies / A. Brusnitsyn // World Energy. – 2007. – No. 6 (42). – P. 46-48.
36. . Mitrova T. Hydrogen economy - the path to low-carbon development / T. Mitrova, Yu. Melnikov, D. Chugunov. – Skolkovo. – 2019. – 62 p.
37. . Max Wei, Gregorio Levis, Ahmad Mayyas Reversible. Fuel Cell Cost Analysis. – Lowrence Berkeley National Laboratory. – 2020.
38. . Tarasov B. P., Lototsky M. V.Hydrogen energy: past, present, future prospects // Rus. Chem. J. (Journal of the Russian Chemical Society named after D. I. Mendeleyev). – 2006. – Vol. L. – No. 6. – P. 5-18.
39. . Stolyarevsky A. Ya. Production of alternative fuel based on nuclear energy sources // Rus. Chem. J. (Journal of the Russian Chemical Society named after D. I. Mendeleyev). – 2008. – Vol. LII. – No. 6. – P. 73-77
40. . Subbotin S. A., Shchepetina T. D. Hydrogen cycle as a condition for the functioning of an energyefficient economy // Atomic strategy. – 2011. – No. 61. – P. 6-7.
41. . Ogrel, L. D. Comparison of the World and Russian Hydrogen Markets / L. D. Ogrel // Gasworld. – 2014. – No. 34. – P. 20-23.
42. . GOST R 51673-2000. Pure gaseous hydrogen. Specifications. – Introduced on 28.11.2000. – Moscow: Publishing House of Standards, 2001. – 27 p.
43. . GOST R 14687-1-2012. Hydrogen fuel. Specifications for the product. Part 1. All applications except for use in proton exchange membrane fuel cells used in road vehicles. – Introduced on 27.11.2012. – Moscow: Standartinform, 2014. – 19 p.
44. . GOST R 14687-2-2013. Hydrogen fuel. Product specifications. Part 2. Hydrogen application for proton exchange membrane fuel cells of road vehicles. – Introduced 24.06.2013. – M.: Standartinform, 2019. – 12 p.
45. . GOST 14687-3-2016. Hydrogen fuel. Product specifications. Part 3. Application for proton exchange membrane fuel cells of stationary power plants. – Introduced 25.10.2016. – M.: Standartinform, 2017. – 27 p.
46. . TU 2114-016-78538315-2008. Ultra-pure hydrogen. Introduced 15.03.2008. – M., 2008. – 27 p.
47. . 47. Saifullin I. Sh. New membrane technologies for the production of ultrapure hydrogen and direct conversion of chemical energy of hydrocarbon fuels into electricity. Kazan. – 2021. – Electronic resource. – Access mode: http://tef.tatar/assets/gallery/26/1200.pdf
48. . Alekseeva O. K. Hydrogen transportation / O. K. Alekseeva, S. I. Kozlov, V. N. Fateev // Alternative fuel transport. – 2011. – No. 3(21). – P. 18-24
49. . .Enhancing hydrogen storage performance via optimizing Y and Ni element in magnesium alloy / Xu Pang [et al.] // Journal of Magnesium and Alloys. – 2022. – Volume 10. – Issue 3. – Pages 821-835.
50. . Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12 wt% reversible hydrogen storage at 400 °C / Xin Zhang [et al.] // Chemical Engineering Journal. – 2022. – Volume 428. – 132566.
51. . Jiri Cermak. Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg / Jiri Cermak, Lubomir Kral, Pavla Roupcova // Renewable Energy. – 2022. – Volume 188. – Pages 411-424.
52. . Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2 / Yuting Shao [et al.] // Applied Surface Science. – 2022. – Volume 585. – 152561.
53. . Achieving superior hydrogen storage properties via in-situ formed nanostructures: A highcapacity Mg-Ni alloy with La microalloying / Xin Ding [et al.] // International Journal of Hydrogen Energy. – 2022. – Volume 47. – Issue 10. – Pages 6755-6766.
54. . An improved hydrogen storage performance of MgH2 enabled by core-shell structure Ni/Fe3O4@MIL / Shuqin Ren [et al.] // Journal of Alloys and Compounds. – 2022. – Volume 892. – 162048.
55. . In-situ introduction of highly active TiO for enhancing hydrogen storage performance of LiBH4 / Zheng long Li [et al.] // Chemical Engineering Journal. – 2022. – Volume 433. – Part 1. – 134485.
56. . Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg-Ni-Zn alloy / Zeming Yuan [et al.] // Materials Characterization. – 2021. – Volume 178. – 111248.
57. . Enhanced hydrogen storage properties of NaBH4-Mg(BH4)2 composites by NdF3 addition / Jianguang Yuan [et al.] // Progress in Natural Science: Materials International. – 2022. – Volume 31. – Issue 4. – Pages 521-526.
58. . Nithin N. Raju. Parametric investigations on LCC1 based hydrogen storage system intended for fuel cell applications / Nithin N. Raju, Ila Abhay Kulkarni, P. Muthukumar // International Journal of Hydrogen Energy. – 2022 (In press).
59. . Satya Prakash Padhee. Role of Mn-substitution towards the enhanced hydrogen storage performance in FeTi / Satya Prakash Padhee, Amritendu Roy, Soobhankar Pati // International Journal of Hydrogen Energy. – 2022. – Volume 47. – Issue 15. – Pages 9357-9371.
60. . A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook / Nasiru Salahu Muhammed [et al.] // Energy Reports. – 2022. – No. 8. – Pp. 461-499.
61. . Exergo-economic analysis for screening of metal hydride pairs for thermochemical energy storage for solar baking system / Iqra Ayub [et al.] // Thermal Science and Engineering Progress. – 2022. – Volume 30. – 101271.
62. . STO Gazprom 2-3.5-051-2006. Standards for technological design of main gas pipelines. – Moscow: VNIIGaz, 2006. – 187 p.
63. . Bulygina L. V. Methods for improving the energy efficiency of compressor stations with gas turbine gas pumping units at the reconstruction stage / L. V. Bulygina, V. I. Ryazhskikh. – Bulletin of the Voronezh State Technical University – DOAO GazproektInzhenering, Voronezh. – 2017. – 32-39 p.
64. . REP Holding. – Gas pumping units GPA-32 «Ladoga» with a capacity of 32 MW / [Electronic resource] URL: https://www.reph.ru/production/type/30/211/
65. . Arkharov I. A. Comparison of specific energy costs in hydrogen vapor recondensation cycles for cryogenic systems of filling stations / I. A. Arkharov, A. M. Arkharov, E. S. Navasardyan // International scientific journal «Alternative Energy and Ecology». – 2018. – No. 04-06 (252-254). – P. 57-69.
Review
For citations:
Aminov R.Z., Bairamov A.N., Filippov S.P. . Alternative Energy and Ecology (ISJAEE). 2024;(10):167-199. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.167-199