

Theoretical substantiation of low-pressure radio frequency plasma flow treatment of agricultural waste for producing oil sorbent
https://doi.org/10.15518/isjaee.2024.10.226-246
Abstract
The paper provides an in-depth exploration of the theoretical framework underpinning the enhancement of sorption capacity in materials derived from agricultural waste through the revolutionary technique of 3D treatment within a lowpressure radio frequency discharge plasma environment. It undertakes a rigorous examination, offering a comprehensive exposition of the intricate physical and mathematical models governing the multifaceted interaction dynamics between low-pressure radio frequency (LP-RF) plasma and capillary porous biopolymers. By employing sophisticated mathematical modeling methodologies, the study meticulously dissects and elucidates the complex processes involved in orchestrating structural modifications across the supramolecular landscape of these materials throughout their entire volume during plasma treatment. This exhaustive theoretical inquiry not only enables the discernment and elucidation of pivotal mechanisms responsible for inducing structural transformations but also unveils the intricate interplay of various factors influencing the ultimate enhancement of sorption properties in agricultural waste-based materials.
About the Authors
I. G. ShaikhievRussian Federation
Shaikhiev Ildar Gilmanovich, Head of the Engineering Ecology Department, professor, Doctor of Technical Sciences
420015, Republic of Tatarstan, Kazan, st. K. Marx, 68
S. V. Stepanova
Russian Federation
Stepanova Svetlana Vladimirovna, Professor of the Engineering Ecology Department, Doctor of Technical Sciences
420015, Republic of Tatarstan, Kazan, st. K. Marx, 68
Z. T. Sanatullova
Russian Federation
Sanatullova Zemfira Talgatovna, Associate Professor of the Engineering Ecology Department, Candidate of Technical Sciences
420015, Republic of Tatarstan, Kazan, st. K. Marx, 68
N. V. Kraysman
Russian Federation
Kraysman Natalia Vladimirovna, Associate Professor of the Department of Foreign Languages for Professional Communication, Candidate of
Historical Sciences
420015, Republic of Tatarstan, Kazan, st. K. Marx, 68
N. A. Politaeva
Russian Federation
Politaeva Natalia Anatolevna, professor at the Higher School of Hydraulic and Energy Construction
195251, St. Petersburg, st. Politekhnicheskaya, 29
A. N. Chusov
Russian Federation
Chusov Alexander Nikolaevich, professor at the Higher School of
Hydraulic and Energy Construction
195251, St. Petersburg, st. Politekhnicheskaya, 29
K. A. Velmozhina
Russian Federation
Velmozhina Ksenia Alekseevna, engineer at the research Laboratory of «Industrial Ecology»
195251, St. Petersburg, st. Politekhnicheskaya, 29
P. S. Shinkevich
Russian Federation
Shinkevich Polina Sergeevna, engineer at the research Laboratory of «Industrial Ecology»
195251, St. Petersburg, st. Politekhnicheskaya, 29
References
1. . Penkov O. V., Khadem M., Lim W. S., Kim D. E. A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research. 2015, 12, 225-235. DOI: 10.1007/s11998-014-9638-z.
2. . Nisar A., Zhang C., Boesl B., Agarwal A. Unconventional materials processing using spark plasma sintering. Ceramic. 2021, 4(1), 20-39. DOI: 10.3390/ceramics4010003.
3. . Cheruthazhekatt S., Černák M., Slavíček P. & Havel J. Gas plasmas and plasma modified materials in medicine // Journal of Applied Biomedicine. 2010, 8(2), 55-66. DOI 10.2478/v10136-009-0013-9
4. . Pavlatová M., Horáková M., Hladík J., Špatenka P. Plasma surface treatment of powder materials – Process and application // Acta Polytechnica. – 2012, 52(3). DOI: 10.14311/1562.
5. . Kaseem M., Fatimah S., Nashrah N., Ko Y. G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance // Progress in Materials Science. – 2021, 117, 100735. DOI: 10.1016/j.pmatsci.2020.100735.
6. . Keidar M., Yan D., Sherman J. H. Plasma as a fourth state of matter. In Cold Plasma Cancer Therapy // Morgan & Claypool Publishers. – 2019, 1-3. DOI: 10.1088/2053-257/aafb9ccn1
7. . Conrads H., Schmidt M. Plasma generation and plasma sources // Plasma Sources Science and Technology. – 2000, 9(4), 441-454.
8. . Laroussi M., Akan T. Arc-free atmospheric pressure cold plasma jets: a review // Plasma Processes and Polymers. – 2007, 4(9), 777-788. DOI: 10.1002/ppap.200700066.
9. . Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications // Journal of Physics D: Applied Physics. – 2020, 53(30), 303001. DOI 10.1088/1361-6463/ab81cf.
10. . George A., Shen B., Craven M., Wang Y., Kang D., Wu C., Tu X. A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization // Renewable and Sustainable Energy Reviews. 2021, 135, 109702. DOI: 10.1016/j.rser.2020.109702.
11. . Chen G., Raja L. L. Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges // Journal of Applied Physics. – 2004, 96(11), 6073-6081.
12. . Laroussi M. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications // Frontiers in Physics. – 2020, 8, 74. DOI: 10.3389/fphy.2020.00074.
13. . Chen H., Yuan D., Wu A., Lin X., Li X. Review of low-temperature plasma nitrogen fixation technology // Waste Disposal & Sustainable Energy. – 2021, 3, 201-217. DOI: 10.1007/s42768-021-00074-z.
14. . Jelil R. A. A review of low-temperature plasma treatment of textile materials // Journal of Materials Science. – 2015, 50(18), 5913-5943. DOI: 10.1007/s10853015-9152-4.
15. . Bhattacharjee S., Dutta T. An overview of oil pollution and oil-spilling incidents. Advances in Oil-Water Separation. – 2022, 3-15. DOI: 10.1016/B978-0-32389978-9.00014-8.
16. . Hassanshahian M., Amirinejad N., Askarinejad Behzadi M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study // Journal of Environmental Health Science and Engineering. – 2020, 18, 1415-1435. DOI: 10.1007/s40201-02000557-x.
17. . Koundinya K. K., Mondal S., Bose A. An overview of worldwide regulations on oil pollution control // Advances in Oil-Water Separation. – 2022, 65-82. DOI: 10.1016/B978-0-323-89978-9.00001-X.
18. . Kalter V., Passow U. Quantitative review summarizing the effects of oil pollution on subarctic and arctic marine invertebrates // Environmental Pollution. – 2022, 120960. DOI: 10.1016/j.envpol.2022.120960.
19. . Al-Jammal N., Juzsakova T. Review on the effectiveness of adsorbent materials in oil spills clean up. Sea. – 2017, 25, 36, 131-138
20. . Husseien M., Amer A. A., El-Maghraby A., Taha N. A. Availability of barley straw application on oil spill clean up // International Journal of Environmental Science & Technology. – 2009, 6, 123-130. DOI: 10.1007/BF03326066.
21. . Zhou Y., Zhang L., Cheng Z. Removal of organic pollutants from aqueous solution using agricultural wastes: a review // Journal of Molecular Liquids. – 2015, 212, 739-762. DOI: 10.1016/j.molliq.2015.10.023.
22. . Galblaub O. A., Shaykhiev I. G., Stepanova S. V., Timirbaeva G. R. Oil spill cleanup of water surface by plant-based sorbents: Russian practices. Process Safety and Environmental Protection. – 2016, 101, 88-92. DOI: 10.1016/j.psep.2015.11.002.
23. . Ifelebuegu A. O., Johnson A. Nonconventional low-cost cellulose-and keratin-based biopolymeric sorbents for oil/water separation and spill cleanup: A review. Critical Reviews in Environmental Science and Technology. – 2017, 47(11), 964-1001. DOI: 10.1080/10643389.2017.1318620.
24. . Dai Y., Sun Q., Wang W., Lu L., Liu M., Li J., Zhang Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. – 2018, 211, 235-253. DOI: 10.1016/j.chemosphere.2018.06.179.
25. . Noor A., Khan S. A. Agricultural Wastes as Renewable Biomass to Remediate Water Pollution. Sustainability. – 2023, 15(5), 4246. DOI: 10.3390/su15054246.
26. . Wolok E., Barafi J., Joshi N., Girimonte R., Chakraborty S. Study of bio-materials for removal of the oil spill // Arabian Journal of Geosciences. – 2020, 13, 1-11. DOI: 10.1007/s12517-020-06244-3.
27. . Doshi B., Sillanpää M., Kalliola S. A review of bio-based materials for oil spill treatment. Water Research. (2018, 135, 262-277. DOI: 10.1016/j.watres.2018.02.034.
28. . Alekseeva A. A., Stepanova S. V. Effect of plasma surface modification of mixed leaf litter on the mechanism of oil film removal from water bodies // Russian Journal of General Chemistry. – 2019, 89, 763–2768. DOI: 10.1134/s107036321913005x
29. . Shaikhiev I. G. Ecological and technological bases of modification and application of waste processing of wool and flax for the purification of polluted waters. Dissertation for the degree of Doctor of Sciences, Kazan National Research Technological University, Kazan, 2011, 357 p. (in Russian)
30. . Sanatullova Z. T. Removal of oils from the water surface of plasma by modified felting and felt production waste. Dissertation for the degree of Candidate of Sciences, Kazan National Research Technological University, Kazan, 2017, 136 p. (in Russian)
Review
For citations:
Shaikhiev I.G., Stepanova S.V., Sanatullova Z.T., Kraysman N.V., Politaeva N.A., Chusov A.N., Velmozhina K.A., Shinkevich P.S. Theoretical substantiation of low-pressure radio frequency plasma flow treatment of agricultural waste for producing oil sorbent. Alternative Energy and Ecology (ISJAEE). 2024;(10):226-245. (In Russ.) https://doi.org/10.15518/isjaee.2024.10.226-246