Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a hybrid floating photovoltaic system with compressed air energy storage (CAES)

https://doi.org/10.15518/isjaee.2025.01.078-089

Abstract

This study presents the development of a hybrid system combining a floating photovoltaic platform with a Compressed Air Energy Storage (CAES) system. The research focuses on theoretical and design aspects, including the integration of solar panels and the CAES system to enhance energy supply efficiency and reliability. Modeling results demonstrated that this combination increases solar panel performance by 10-15% through water cooling and achieves an energy storage efficiency of 41%, making the system competitive with traditional energy storage methods. Experiments confirmed the system’s stability under various climatic conditions and variable loads. The proposed solution offers significant environmental and economic potential, making it highly relevant for renewable energy applications, particularly for companies advancing sustainable energy systems.

About the Authors

S. V. Rzayeva
Azerbaijan State Oil and İndustry University
Azerbaijan

Rzayeva Sona Vagif -  head of the laboratory of the Department of Electromechanics 

Az 1010, Republic of Azerbaijan, Baku, Azadlig Ave., 16/21 

Web of Science (Researcher ID): GWV-1048-2022; KDX-6073-2024
SCOPUS ID: 58524148100 



N. M. Piriyeva
Azerbaijan State Oil and İndustry University
Azerbaijan

Piriyeva Najiba Melik -  Doctor of Technical Sciences, Associate Professor of the Department of Electromechanics 

Az 1010, Republic of Azerbaijan, Baku, Azadlig Ave., 16/21 

Web of Science (Researcher ID): GWV-1063-2022
SCOPUS ID: 56728571900 



References

1. Grishin A. A., Lisitsyn A. B. Optimization of hybrid energy systems using renewable energy sources // Bulletin of Energy. – 2022. – Vol. 5. – Pp. 45-58.

2. Tan S. & Koh W. Heuristic Strategies for Managing Energy Flows in Hybrid Renewable Systems // Energy Systems. – 2023. – Vol. 14. – Pp. 321-334. DOI: 10.1007/s12667-023-00987-6.

3. Petrov I. E., Lazarev A. V. Innovative approaches to the integration of energy storage systems based on compressed air // Bulletin of the Russian Academy of Sciences. Power Engineering. – 2020. – Vol. 6. – Pp. 102-118.

4. Yao H., Zhang T. & Li M. Compressed Air Energy Storage Systems: Current Trends and Future Perspectives // Applied Energy. – 2021. – Vol. 303. – Article ID 117682. DOI: 10.1016/j.apenergy.2021.117682.

5. Huang Z. & Chen X. Design Considerations for Floating Photovoltaic Systems // Energy Procedia. – 2021. – Vol. 157. – Pp. 1053-1062. DOI: 10.1016/j.egypro.2021.07.140.

6. Gupta R. & Sharma K. Impact of Cooling Methods on Floating Solar Panel Efficiency // Solar Energy. – 2022. – Vol. 233. – Pp. 101-110. DOI: 10.1016/j.solener.2022.01.045.

7. Rahman M. & Islam M. Integrating CAES and Solar Farms for Peak Load Management // International Journal of Energy Research. – 2022. – Vol. 46. – Pp. 1221-1234. DOI: 10.1002/er.7549.

8. Fernandez R. & Costa P. Performance of MultiStage Compressors in CAES Systems // Energy Engineering. – 2022. – Vol. 119. – Pp. 209-223. DOI: 10.1109/TIA.2022.3103245.

9. Ivanov V. N., Sidorov D. A. Analysis of the efficiency of floating photovoltaic installations in continental climate conditions // Energy Policy of Russia. – 2021. – Volume 3. – P. 27-35.

10. Xie J., Wang P. & Liu Z. Performance Optimization of Floating Solar PV Systems in Subtropical Climates // Renewable Energy. – 2022. – Vol. 180. – Pp. 342-356. DOI: 10.1016/j.renene.2022.03.054.

11. Nakamura T. & Aoyama H. Energy Yield of Floating PV Arrays under Different Climatic Conditions // Solar Energy Materials & Solar Cells. – 2023. – Vol. 251. Article ID 112051. DOI: 10.1016/j.solmat.2023.112051.

12. Sokolova E. N., Trofimov A. V. Economic assessment of the use of CAES in power systems with a high share of renewable energy sources // Thermal Power Engineering. – 2021. – Vol. 9. – Pp. 67-78.

13. Kumar A. & Singh P. Economic Viability of CAES Integration in Renewable Energy Grids // Energy Conversion and Management. – 2023. – Vol. 256. Article ID 115976. DOI: 10.1016/j.enconman.2023.115976.

14. Müller C. & Schmidt J. Environmental Impacts of Floating Solar Farms // Nature Sustainability. – 2022. – Vol. 5. – Pp. 568-578. DOI: 10.1038/s41893-022-00837-4.

15. Gao X. & Ren Y. Economic and Environmental Benefits of Floating Solar Installations // Environmental Research Letters. – 2023. – Vol. 18. Article ID 052013. DOI: 10.1088/1748-9326/acbb17.

16. Kuznetsov P. S., Rybakov M. A. Modeling of Thermodynamic Processes in Hybrid Systems with Photovoltaic Panels // Energy of the Future. – 2022. – Vol. 4. – Pp. 84-92.

17. Lee D. & Park S. Simulation of Hybrid Renewable Energy Systems with Energy Storage // Energy Reports. – 2023. – Vol. 9. – Pp. 430-443. DOI: 10.1016/j.egyr.2023.01.123.

18. Zhang L. & Zhou J. Experimental Analysis of Floating PV Systems with Integrated CAES // Renewable and Sustainable Energy Reviews. – 2023. – Vol. 169. Article ID 112985. DOI: 10.1016/j.rser.2023.112985.

19. Oliveira M. & Silva J. Compressed Air Energy Storage for Stabilizing Solar Energy Outputs // Journal of Energy Storage. – 2022. – Vol. 48. Article ID 103817. DOI: 10.1016/j.est.2022.103817.

20. Ivanova T. V., Kozlov S. A. Forecasting the performance of hybrid solar and wind plants // Energy and Sustainable Development. – 2022. – Vol. 11. – Pp. 52-64.

21. Wang L. & Chen Z. Hybrid Renewable Energy Systems for Rural Electrification // Journal of Renewable and Sustainable Energy. – 2022. – Vol. 14. – Pp. 057101. DOI: 10.1063/5.0096743.

22. Petrov I. E., Melnikov S. V. Influence of Compressed Air Integration on the Efficiency of Hybrid Energy Systems // Bulletin of the Russian Academy of Sciences. Power Engineering. – 2021. – Vol. 5. – P. 88-101.

23. Jiang Y. & Zhang W. A Study on Optimal Sizing of Hybrid Wind-Solar Systems with Energy Storage // Energy. – 2023. – Vol. 238.Article ID 121763. DOI: 10.1016/j.energy.2021.121763.

24. Lukashev A. V., Yakovleva M. V. Comparative analysis of energy storage technologies for renewable sources // Electric stations. – 2022. – Vol. 7. – Pp. 45-56.

25. Khan M. T. & Alam S. Optimization Techniques for Energy Management in Hybrid Renewable Systems // Renewable and Sustainable Energy Reviews. – 2022. – Vol. 153. – P. 111734. DOI: 10.1016/j.rser.2021.111734.

26. Smirnov A. Yu., Popov, V. P. Development of a Model for Managing Energy Flows in Hybrid Systems with Photovoltaic Panels and Wind Turbines // Bulletin of Science and Education. – 2022. – Vol. 3. – Pp. 34-47.

27. Singh R. & Bhardwaj N. Techniques for Managing Hybrid Renewable Energy Systems for Optimal Energy Flow // Energy Reports. – 2023. – Vol. 9. – Pp. 530-541. DOI: 10.1016/j.egyr.2023.01.178.

28. Zakharova T. Yu., Morozov, S. P. Technical Aspects of Integrating Compressed Air into Photovoltaic Systems // Energy of Russia. – 2022. – Vol. 4. – Pp. 15-23.

29. Chen S. & Li Z. Advanced Control Strategies for Hybrid Wind-Solar-PV Systems // Renewable Energy. – 2023. – Vol. 186. – Pp. 576-589. DOI: 10.1016/j.renene.2022.10.042.

30. Pokrovsky M. V., Chistyakov O. I. Load Forecasting in Hybrid Power Systems with Integration of Energy Storage Units // Electric and Thermal Stations. – 2023. – Vol. 8. – Pp. 102-116.

31. Liu H. & Zhao F. Advanced Energy Management Strategies for Hybrid Renewable Energy Systems with Multi-Objective Optimization // Energy. – 2023. – Vol. 248. – Article ID 124835. DOI: 10.1016/j.energy.2023.124835.

32. Kim Y. & Choi J. Simulation and Analysis of Hybrid Solar-Wind Energy Systems under Variable Load Conditions // Journal of Energy Conversion and Management. – 2022. – Vol. 236. – P. 123123. DOI: 10.1016/j.enconman.2022.123123.

33. Gonzalez A. & Morales M. Exploring the Efficiency of Modular Energy Storage Systems in Hybrid Configurations // Sustainable Energy Technologies and Assessments. – 2023. – Vol. 54. – Article ID 102897. DOI: 10.1016/j.seta.2023.102897.

34. Ivanov A. V., Lapin E. S. Operation of hybrid systems using hydrogen technologies // Energy Strategy of Russia. – 2022. – Vol. 6. – Pp. 94-105.

35. Chen H. & Wang X. Energy Optimization for Hybrid Renewable Systems with AI Techniques // Renewable and Sustainable Energy Reviews. – 2023. – Vol. 176. – Article ID 113249. DOI: 10.1016/j.rser.2023.113249.

36. Pereira L. & Silva F. Enhancing the Integration of Offshore Wind and Floating PV Systems // Journal of Renewable Energy. – 2022. – Vol. 195. – Pp. 113-126. DOI: 10.1016/j.renene.2022.06.044.

37. Romanov I. P., Tikhonov N. A. Application of adaptive control algorithms in hybrid renewable energy systems // News of universities. Power engineering. – 2023. – Vol. 4. – P. 75-86.

38. Zhang W. & Li Q. Evaluation of Thermal Management Systems for Energy Storage in Hybrid Configurations // Applied Thermal Engineering. – 2022. – Vol. 208. – Article ID 118218. DOI: 10.1016/j.applthermaleng.2022.118218.

39. Nikitin A. S., Orlov A. E. Optimization of energy flows in photovoltaic and wind turbines with batteries // Energy saving and hydrogen technologies. – 2022. – Vol. 7. – Pp. 38-51.

40. Habib S. & Khan A. Lifecycle Analysis of Floating Solar Farms in Energy Networks // Environmental Science and Technology. – 2023. – Vol. 57. – Pp. 4856-4870. DOI: 10.1021/acs.est.3c10425.

41. Morales D. & Lopez A. Design and Deployment of Scalable Energy Storage for Hybrid Systems // Journal of Power Sources. – 2023. – Vol. 560. – Article ID 232167. DOI: 10.1016/j.jpowsour.2023.232167.

42. Sidorov B. N., Chernov D. A. Study of the sustainability of hybrid systems with a high level of renewable energy integration // Bulletin of the Russian Academy of Sciences. – 2023. – Vol. 8. – Pp. 22-36.


Review

For citations:


Rzayeva S.V., Piriyeva N.M. Development of a hybrid floating photovoltaic system with compressed air energy storage (CAES). Alternative Energy and Ecology (ISJAEE). 2025;(1):78-89. (In Russ.) https://doi.org/10.15518/isjaee.2025.01.078-089

Views: 211


ISSN 1608-8298 (Print)