Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Application of magnetic levitation technologies to enhance the efficiency of wind energy systems

https://doi.org/10.15518/isjaee.2025.01.090-104

Abstract

The research area focuses on the integration of magnetic levitation (Maglev) technologies to enhance the efficiency of wind energy installations. The study examines the theoretical aspects of applying magnetic levitation, which minimizes mechanical friction, reduces wear, and increases the durability of rotor components. Experimental investigations were conducted to analyze the impact of magnetic levitation on the stability of turbine rotation under variable wind conditions, enabling a higher efficiency coefficient for the system. Key outcomes include the development of a vertical wind turbine model utilizing Maglev technologies, which demonstrates reduced operational costs, lower noise levels, and improved environmental sustainability. The intended beneficiaries of the results are renewable energy companies and urban infrastructures aiming to adopt innovative solutions to reduce their carbon footprint.

About the Authors

G. S. Kerimzade
Azerbaijan State Oil and Industry University
Azerbaijan

Kerimzade Gulsсhen Sanan -  Department of Electromechanics, PhD in Engineering, Associate Professor 

Republic of Azerbaijan, Az 1010, Baku, Azadlig Ave., 16/21 



G. V. Mamedova
Azerbaijan State Oil and Industry University
Azerbaijan

Mamedova Gulaya Veysal -  Department of Electromechanics, PhD, Associate
Professor 

Republic of Azerbaijan, Az 1010, Baku, Azadlig Ave., 16/21 



References

1. Xie H. & Zhang, L. (2022). Magnetic Levitation in Modern Transport Systems: A Review of Technology and Applications // Journal of Transport Engineering, 45(3), 215-234.

2. Yao Y., Liu M. & Chen J. (2021). Magnetic Levitation and Its Applications in Industrial Machinery // Industrial Engineering Journal, 38(5), 455-467.

3. Zhang X., Li D. & Wang T. (2023). Integration of Magnetic Levitation in Renewable Energy Technologies: Challenges and Prospects // Renewable Energy Systems, 15(2), 120-134.

4. NuEnergy Technologies. (2024). Maglev Wind Turbine: Innovations in Wind Power Generation. Retrieved from http://www.nuenergytech.com

5. Ouyang Y. & Tan W. (2020). The Impact of Magnetic Levitation on Wind Turbine Efficiency // Energy Engineering, 42(4), 290-302.

6. O’Connor S. & Patel R. (2019). Advancements in Levitation Technologies and Their Impact on Industrial Automation // Automation Technology Review, 23(8), 314-329.

7. Liang X. & Han J. (2021). Smart Control Systems in Magnetic Levitation Technologies: A Survey // Journal of Control Systems, 56(7), 725-737.

8. Zhang Y. & Zhao Q. (2022). Applications of Magnetic Levitation in Healthcare: From MRI to Robotics // Health Technology Innovations, 12(1), 89-102.

9. Kerimzade G. S. (2024). Structure of the monitoring and tracking electromechanical control system // PRZEGLĄD Elektrotechniczny, 100(7), 295-297.

10. Mamedova G. V. (2025). Characteristic features of control methods in electromechanical devices // Reliability: Theory & Applications, 20(4), 958-966.

11. Mamedova G. V., Kerimzade, G. S. (2024). Design parameters for electromechanical devices with a levitation element // PRZEGLĄD Elektrotechniczny, 100(9), 111-113.

12. Kerimzade G. S., Mamedova, G.V. (2024). Research of electromechanical devices with levitation elements in control systems // Reliability: Theory & Applications, 19(2), 85-90.

13. Marufov I. M., Mammadov N. S., Piriyeva N. M., Ismayilova Sh. (2024). Calculation of induction levitation vertical axis wind generator-turbine system parameters, levitation, and influence loop // PRZEGLĄD Elektrotechniczny, 100(2), 135-139.

14. Mammadov N. S., Piriyeva N. M., Ismayilova Sh. (2024). Research of lightning protection systems for wind electric installations // PRZEGLĄD Elektrotechniczny, 99(9), 198-201.

15. Piriyeva N. M., Kerimzade G. S., Mamedova G. V. (2024). Issues of design of electrical devices with levitation elements // International Journal on Technical and Physical Problems of Engineering (IJTPE), 15(3), 120-125.

16. Mamedova G. V., Kerimzade G. S., Piriyeva N. M. (2022). Electromagnetic calculation of tension devices for winding wires of small cross-sections // IJTPE Journal, 14(4), 80-85.

17. Piriyeva N. M. Design of electric devices with induction levitation elements // International Journal on «Technical and Physical Problems of Engineering» (IJTPE). Published by International Organization of IOTPE, Vol. 14, No. 1, pp. 124-129, mart 2022.

18. Piriyeva N. M., Kerimzade G. S. Systematization of levitation equations for electrical devices with levitation elements // PRZEGLAD Elektrotechniczny R. 100 NR 08/2024. Warszawa. pp. 175-177.

19. Piriyeva N. M., Kerimzade G. S. Methods for increasing electromagnetic efficiency in induction levitator // PRZEGLAD Elektrotechniczny Publishing house of magazines and technical literature Warszawa. – № 10, pp. 192-196.

20. Abdullayev Y. R., Kerimzade G. S., Mammadova G. V., Piriyeva N. M. (2018). Design issues of electromechanical converters with levitation elements // Elektromekhanika Scientific and Technical Journal, 61(2), 47-52.

21. Абдуллаев Я. Р., Керимзаде Г. С., Мамедова Г. В., Пириева Н. М. (2017). Обобщенные показатели электромагнитных устройств с левитационными элементами // Известия высших учебных заведений. Приборостроение, 60(5), 447-453.

22. Абдуллаев Я. Р., Керимзаде Г. С., Пириева Н. М. & Маруфов И. М. (2020). Применение управляющего индукционного левитатора в ветрогенераторе с вертикальной осью // Известия Высших Технических Школ Азербайджана. – Баку, (2), 124.

23. Mammadov N., Marufov I., Shikhaliyeva S., Aliyeva G., Kerimova, S. (2024). Research of methods power control of wind turbines // PRZEGLĄD Elektrotechniczny, 2024(5).

24. Abdullayev Y. R., Marufov I. M., Kerimzade O. O. (2018). Improvement of the levitation system of a wind generator with a vertical axis // Izvestiya Vysshikh Uchebnykh Zavedeniy. Elektromekhanika, 61(4), 26-31.

25. Mammadov N. S., Mukhtarova K. M. (2023). Analysis of the smart grid system for renewable energy sources // Universum: Tekhnicheskie Nauki, (2-6 (107)), 64-67.

26. Mammadov N. S. (2023, July). Prospects for the development of renewable energy sources. The 29th International Scientific and Practical Conference «Modern Scientific Trends and Youth Development» (рp. 211-244). – Warsaw, Poland.

27. Mammadov N. S. (2024). Safety in the operation of wind turbines: Ensuring reliability and protection // Vestnik Nauki, 1(7 (76)), 883-888.

28. Mukhtarova K. M. (2024). Investigation of a system for the integrated conversion of wind and solar energy into electrical energy // Vestnik Nauki, 2(10 (79)), 809-813.

29. Di Paolo M., Nuzzo I., Caterino N., Georgakis C. T. (2021). A friction-based passive control technique to mitigate wind-induced structural demand to wind turbines // Engineering Structures, 232, 111744.

30. Yu W., Li X. (2014). A magnetic levitation system for advanced control education. Proceedings of the 19th World Congress of the International Federation of Automatic Control (pp. 9032-9037). – Cape Town, South Africa.

31. Carneiro P., Santos M. P. S. D., Rodrigues A., Ferreira J. A. F., Simões J. A. O., Marques A. T., Kholkin A. L. (2020). Electromagnetic energy harvesting using magnetic levitation architectures: A review // Applied Energy, 260, 114191.

32. Dimitrova M., Aminzadeh A., Meiabadi M. S., Sattarpanah Karganroudi S., Taheri H. & Ibrahim H. (2022). A survey on non-destructive smart inspection of wind turbine blades based on Industry 4.0 strategy // Applied Mechanics, 3, 1299-1326.

33. Wai R. J., Lee J. D. & Chuang K. L. (2010). Real-time PID control strategy for maglev transportation system via particle swarm optimization // IEEE Transactions on Industrial Electronics, 58, 629-646.

34. Peijnenburg A., Vermeulen J. & Van Eijk J. (2006). Magnetic levitation systems compared to conventional bearing systems // Microelectronics Engineering, 83, 1372-1375.

35. Boudali H., Williams R. & Giras T. (2003). A Simulink simulation framework of a Maglev model. Proceedings of the Institution of Mechanical Engineers, Part F // Journal of Rail and Rapid Transit, 217, 227-236.

36. Le M. Q., Capsal J. F., Lallart M., Hebrard Y., Van Der Ham A., Ree N. et al. (2015). Review on energy harvesting for structural health monitoring in aeronautical applications // Progress in Aerospace Sciences, 79, 147-157. https://doi.org/10.1016/j.paerosci.2015.10.001.

37. Munaz A., Lee B. C. & Chung G. S. (2013). A study of an electromagnetic energy harvester using multi-pole magnet. Sensors and Actuators A // Physical, 201, 134-140. https://doi.org/10.1016/j.sna.2013.07.003.

38. Albadi M. & El-Saadany E. (2010). Overview of wind power intermittency impacts on power systems // Electric Power Systems Research, 80(6), 627-632. https://doi.org/10.1016/j.epsr.2009.10.035.

39. Gao M., Wang Y., Wang Y. & Wang, P. (2018). Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation // Applied Energy, 220, 856-875. https://doi.org/10.1016/j.apenergy.2018.03.170.

40. Nammari A., Doughty S., Savage D., Weiss L., Jaganathan A. & Bardaweel H. (2017). Design and analysis of a small-scale magnetically levitated energy harvester utilizing oblique mechanical springs // Microsystem Technologies, 23, 4645-4657. https://doi.org/10.1007/s00542-017-3324-x.

41. Kecik K., Mitura A., Lenci S. & Warminski J. (2017). Energy harvesting from a magnetic levitation system // International Journal of Non-Linear Mechanics, 94, 200-206. https://doi.org/10.1016/j.ijnonlinmec.2017.03.021.

42. Berdy D. F., Valentino D. J. & Peroulis D. (2015). Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester // Sensors and Actuators A: Physical, 222, 262-271. https://doi.org/10.1016/j.sna.2014.12.006.

43. Pancharoen K., Zhu D. & Beeby S. P. (2017). Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester // Sensors and Actuators A: Physical, 256, 1-11. https://doi.org/10.1016/j.sna.2017.01.011.

44. Carneiro P., dos Santos M. P. S., Rodrigues A., Ferreira J. A., Simões J. A., Marques A. T. & Kholkin A. L. (2020). Electromagnetic energy harvesting using magnetic levitation architectures: A review // Applied Energy, 260, 114191. https://doi.org/10.1016/j.apenergy.2019.114191.

45. Yaghoubi H. (2012). Practical applications of magnetic levitation technology. Iran Maglev Technology (IMT), Iran, 1-56.

46. Palagummi S. & Yuan F. G. (2016). Magnetic levitation and its application for low frequency vibration energy harvesting. In Structural Health Monitoring (SHM) in Aerospace Structures (pp. 213-251). Woodhead


Review

For citations:


Kerimzade G.S., Mamedova G.V. Application of magnetic levitation technologies to enhance the efficiency of wind energy systems. Alternative Energy and Ecology (ISJAEE). 2025;(1):90-104. (In Russ.) https://doi.org/10.15518/isjaee.2025.01.090-104

Views: 195


ISSN 1608-8298 (Print)