Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of hydrogen refueling stations: innovations and improvements in the context of global trends

https://doi.org/10.15518/isjaee.2025.01.173-185

Abstract

 This article addresses pressing issues in the development of hydrogen refueling infrastructure as a key component in promoting environmentally friendly transportation. It provides a review of recent research and approaches to the design and optimization of hydrogen refueling stations (Hydrogen Refueling Station, HRS), including methods of hydrogen fuel delivery and storage. The current state and global distribution of HRS are analyzed, highlighting major challenges such as safety, production costs, transportation, and storage of hydrogen. Various configurations and technological solutions aimed at improving hydrogen refueling systems are examined, with the potential to accelerate the deployment of hydrogen infrastructure. The study underscores the importance of advancing this field to reduce carbon emissions and transition to more sustainable energy sources. 

About the Authors

V. A. Gavrilov
Kazan State Energy University
Russian Federation

Gavrilov Vadim Alexandrovich -  Ph. D. in Technical Sciences, Associate Professor of the Department of «Power Supply for Industrial Enterprises», Head of the Research Laboratory «Renewable Energy Sources and Energy Facilities» 

 420066, Kazan, Russia, Krasnoselskaya st., 51 

 (843) 519-42-73 



A. V. Leontiev
Kazan State Energy University
Russian Federation

Leontiev Alexander Vasilievich -  Doctor of Education (Ed. D.), Professor, First Vice-Rector – Vice-Rector for Academic Affairs 

 420066, Kazan, Russia, Krasnoselskaya st., 51 



R. I. Razakova
Kazan State Energy University
Russian Federation

Razakova Regina Irshatovna -  Senior Lecturer of the Department of «Chemistry and Hydrogen Energy» 

 420066, Kazan, Russia, Krasnoselskaya st., 51 



A. S. Tsoy
Kazan State Energy University
Russian Federation

Tsoy Alexander Stanislavovich -  Junior Researcher of the Research Laboratory «Renewable Energy Sources and Energy Facilities» 

 420066, Kazan, Russia, Krasnoselskaya st., 51 



References

1. Edwards R. L., Font-Palma C., Howe J. The status of hydrogen technologies in the UK: A multi-disciplinary review // Sustainable Energy Technologies and Assessments. – 2021. – V. 43. – P. 100901.

2. Bai Y. et al. Modeling and optimal control of fast filling process of hydrogen to fuel cell vehicle // Journal of Energy Storage. – 2021. – V. 35. – P. 102306.

3. Guo Q. et al. RETRACTED: Risk-based design of hydrogen storage-based charging station for hydrogen and electric vehicles using downside risk constraint approach. – 2022.

4. Council H. Path to hydrogen competitiveness: a cost perspective. – 2020.

5. Acar C., Dincer I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 5. – Pp. 3396-3406.

6. Genovese M., Fragiacomo P. Hydrogen refueling station: Overview of the technological status and research enhancement // Journal of Energy Storage. – 2023. – V. 61. – P. 106758.

7. Briguglio N. et al. New simulation tool helping a feasibility study for renewable hydrogen bus fleet in Messina // International Journal of hydrogen energy. – 2008. – V. 33. – №. 12. – Pp. 3077-3084.

8. Bourgeois T. et al. Optimization of hydrogen vehicle refuelling requirements // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 19. – Pp. 13789-13809.

9. Ahmadi S., Bathaee S. M. T., Hosseinpour A. H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy // Energy Conversion and Management. – 2018. – V. 160. – Pp. 74-84.

10. Robledo C. B. et al. Fuel cell electric vehicle-to-grid feasibility: a technical analysis of aggregated units offering frequency reserves // Intelligent Integrated Energy Systems: The Power Web Program at TU Delft. – 2019. – Pp. 167-194.

11. Boudries R. Comparative economic competitiveness assessment of hydrogen as a fuel in the transport sector in Algeria // Chemical Engineering Transactions. – 2014. – V. 42. – Pp. 61-66.

12. Moriarty P., Honnery D. Prospects for hydrogen as a transport fuel // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 31. – Pp. 16029-16037.

13. Burkhardt J. et al. Hydrogen mobility from wind energy – a life cycle assessment focusing on the fuel supply // Applied energy. – 2016. – V. 181. – Pp. 54-64.

14. Genovese M., Fragiacomo P. Hydrogen refueling station: Overview of the technological status and research enhancement // Journal of Energy Storage. – 2023. – V. 61. – P. 106758.

15. Matute G., Yusta J. M., Correas L. C. Techno-economic modelling of water electrolysers in the range of several MW to provide grid services while generating hydrogen for different applications: a case study in Spain applied to mobility with FCEVs // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 33. – Pp. 17431-17442.

16. Kolbe K. Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation // Transport Policy. – 2019. – V. 80. – Pp. 1-11.

17. Sinigaglia T. et al. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 39. – Pp. 24597-24611.

18. Farahani S. S. et al. Hydrogen-based integrated energy and mobility system for a real-life office environment // Applied Energy. – 2020. – V. 264. – P. 114695.

19. Nazir H. et al. Is the H2 economy realizable in the foreseeable future? Part III: H 2 usage technologies, applications, and challenges and opportunities // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 53. – Pp. 28217-28239.

20. Lahnaoui A. et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 35. – Pp. 19302-19312.

21. Kwasie M. et al. Hydrogen Fuel Cell Vehicle Infrastructure: Analyzing Barriers to Investment and Entry to Support Stakeholder Collaboration // Sustainability Lab. – 2015. – Pp. 1-15.

22. Wang J. Barriers of scaling-up fuel cells: Cost, durability and reliability // Energy. – 2015. – V. 80. – Pp. 509-521.

23. Xu C., Wu Y., Dai S. What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach // Energy Policy. – 2020. – V. 142. – P. 111495.

24. Genovese M. et al. Multi-year energy performance data for an electrolysis-based hydrogen refueling station // International Journal of Hydrogen Energy. – 2024. – V. 52. – Pp. 688-704.

25. Pagliaro M. et al. Hydrogen refueling stations: safety and sustainability // Gen. Chem. – 2020. – V. 6. – P. 190029.

26. Depcik C. et al. Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle // Energy conversion and management. – 2020. – V. 207. – P. 112514.

27. He F. et al. Comparison study and synthetic evaluation of combined injection in a spark ignition engine with hydrogen-blended at lean burn condition // Energy. – 2018. – V. 157. – Pp. 1053-1062.

28. Viesi D., Crema L., Testi M. The Italian hydrogen mobility scenario implementing the European directive on alternative fuels infrastructure (DAFI 2014/94/EU) // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 44. – Pp. 27354-27373.

29. Zhang W., Maleki A., Nazari M. A. Optimal operation of a hydrogen station using multi-source renewable energy (solar/wind) by a new approach // Journal of Energy Storage. – 2022. – V. 53. – P. 104983.

30. Демидионов М. Ю. Пространственное моделирование потенциала развития альтернативной энергетики на примере острова Сахалин // Тихоокеанская география. –2023. –№ 4. –С. 82-92. https://doi.org/10.35735/26870509_2023_16_8. EDN: PDZYFQ.

31. Samsun R. C. et al. Deployment of fuel cell vehicles and hydrogen refueling station infrastructure: a global overview and perspectives // Energies. – 2022. – V. 15. – №. 14. – P. 4975.

32. IEA. Hydrogen and Fuel Cells. – OECD Publishing, 2015.

33. Grüger F. et al. Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior // Applied energy. – 2018. – V. 228. – Pp. 1540-1549.

34. Undertaking H. J. Hydrogen roadmap Europe: a sustainable pathway for the European energy transition. – 2019.

35. Hassan Q. et al. Hydrogen fuel cell vehicles: Opportunities and challenges // Sustainability. – 2023. – V. 15. – №. 15. – P. 11501.

36. Samsun R. C., Antoni L., Rex M. Mobile fuel cell application: tracking market trends // IEA technology collaboration programme advanced cell. – 2020.

37. Samsun R. C. et al. Deployment status of fuel cells in road transport: 2021 update. – Elektrochemische Verfahrenstechnik, 2021. – №. FZJ-2021-03033.

38. H2Stations.org. Hydrogen Refueling Stations Overview [Электронный ресурс]. – 2024. – Режим доступа: https://www.h2stations.org/ (дата обращения: 20.10.2024). – Текст: электронный.

39. U. S. Department of Energy – Energy Efficiency and Renewable Energy. Alternative Fueling Station Counts by State [Электронный ресурс] // Alternative Fuels Data Center. – Режим доступа: https://afdc.energy.gov/stations/states (дата обращения: 03.01.2022). – Текст: электронный.

40. International Energy Agency (IEA). Global EV Outlook 2023: Catching Up with Climate Ambitions [Электронный ресурс]. – International Energy Agency, 2023. – Режим доступа: https://www.iea.org/reports/global-ev-outlook-2023 (дата обращения: 10.09.2024). – Текст: электронный.

41. Lohse-Busch, H., Stutenberg, K., Duoba, M., Iliev, S. Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai (No. ANL/ESD-18/12). – Argonne National Laboratory (ANL), Argonne, IL, USA, 2018. – [Электронный ресурс]. – Режим доступа: Google Scholar (дата обращения: 10.09.2024).

42. Sery J., Leduc P. Fuel cell behavior and energy balance on board a Hyundai Nexo // International Journal of Engine Research. – 2022. – V. 23. – №. 5. – Pp. 709-720.

43. BMW Group. BMW iX5 Hydrogen: A Vision for Sustainable Mobility [Электронный ресурс] // BMW Official Website. – 2023. – Режим доступа: https://www.bmwgroup.com/en/company/ix5-hydrogen.html (дата обращения: 21.10.2024).

44. Daimler AG. Mercedes-Benz GLC F-CELL: Innovative Hydrogen Technology [Электронный ресурс] // Daimler Global. – 2023. – Режим доступа: https://www.daimler.com/sustainability/glc-fcell.html (дата обращения: 21.10.2024).

45. НАМИ. Водородные проекты и разработки [Электронный ресурс]. – 2024. – Режим доступа: https://hydrogen.nami.ru/#slide2 (дата обращения: 21.10.2024).

46. КАМАЗ. Первый водоробус от КАМАЗ [Электронный ресурс]. – 2024. – Режим доступа: https://kamaz.ru/press/releases/pervyy_vodorobus_ot_kamaza/ (дата обращения: 21.10.2024)

47. Shi J. et al. Methodological improvements in the risk analysis of an urban hydrogen fueling station // Journal of Cleaner Production. – 2020. – V. 257. – P. 120545.

48. International Energy Agency (IEA). Global Hydrogen Review 2023. – Париж: IEA, 2023. – Режим доступа: https://www.iea.org/reports/global-hydrogen-review-2023 (дата обращения: 21.10.2024).

49. Dodds P. E., McDowall W. A review of hydrogen delivery technologies for energy system models // Uk Shec. – 2012. – P. 3-35.

50. Cheng T. P. The Power of Experience Hydrogen Delivery Infrastructure Options Analysis: Final Report [Электронный ресурс]. – Режим доступа: https://www.energy.gov/sites/prod/files/2014/03/f11/delivery_infrastructure_analysis.pdf (дата обращения: 21.10.2024).

51. Karasawa H. Cost evaluation for centralized hydrogen production // Progress in Nuclear Energy. – 2005. – V. 47. – №. 1-4. – Pp. 512-518.

52. Yang C., Ogden J. Determining the lowest-cost hydrogen delivery mode // International Journal of Hydrogen Energy. – 2007. – V. 32. – №. 2. – Pp. 268-286.

53. Demir M. E., Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios // International Journal of Hydrogen Energy. – 2018. – V. 43. – №. 22. – Pp. 10420-10430.

54. Yanxing Z. et al. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen // International Journal of Hydrogen Energy. – 2019. – V. 44. – №. 31. – Pp. 16833-16840.

55. Reddi K. et al. Challenges and opportunities of hydrogen delivery via pipeline, tube-trailer, LIQUID tanker and methanation-natural gas grid // Hydrogen science and engineering: materials, processes, systems and technology. – 2016. – Pp. 849-874.

56. Kimura S. et al. Preliminary feasibility study for on-site hydrogen station with distributed CO2 capture and storage system // Energy Procedia. – 2014. – V. 63. – Pp. 4575-4584.

57. Symes D. et al. Design for on-site hydrogen production for hydrogen fuel cell vehicle refueling station at University of Birmingham, UK // Energy Procedia. – 2012. – V. 29. – Pp. 606-615.

58. Cho S., Kim J. Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops // Energy. – 2019. – V. 185. – Pp. 527-540.

59. Abdalla A. M. et al. Hydrogen production, storage, transportation and key challenges with applications: A review // Energy conversion and management. – 2018. – V. 165. – Pp. 602-627.

60. Zhou T., Francois B. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system // International journal of hydrogen energy. – 2009. – V. 34. – №. 1. – Pp. 21-30.

61. Penev M., Zuboy J., Hunter C. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations // Transportation Research Part D: Transport and Environment. – 2019. – V. 77. – Pp. 92-105.

62. Miao B., Giordano L., Chan S. H. Long-distance renewable hydrogen transmission via cables and pipelines // International Journal of Hydrogen Energy. – 2021. – V. 46. – №. 36. – Pp. 18699-18718.

63. Reddi K. et al. Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles // International Journal of Hydrogen Energy. – 2017. – V. 42. – №. 26. – Pp. 16675-16685.

64. Mathison S. et al. Field validation of the MC default fill hydrogen fueling protocol // SAE International Journal of Alternative Powertrains. – 2015. – V. 4. – №. 1. – Pp. 130-144.

65. Lowesmith B. J., Hankinson G., Chynoweth S. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS // International Journal of Hydrogen Energy. – 2014. – V. 39. – №. 35. – Pp. 20516-20521.

66. Makhloufi C., Kezibri N. Large-scale decomposition of green ammonia for pure hydrogen production // International Journal of Hydrogen Energy. – 2021. – V. 46. – №. 70. – Pp. 34777-34787.

67. Ishimoto Y. et al. Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 58. – Pp. 32865-32883.

68. Teichmann D. et al. Transport and storage of hydrogen via liquid organic hydrogen carrier (LOHC) systems // Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. – 2016. – Pp. 811-830.

69. Lee S. et al. Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis // Renewable and Sustainable Energy Reviews. – 2021. – V. 150. – P. 111447.

70. Dong Z. et al. A design methodology of largescale metal hydride reactor based on schematization for hydrogen storage // Journal of Energy Storage. – 2022. – V. 49. – P. 104047.

71. Afzal M., Sharma P. Design of a large-scale metal hydride, based hydrogen storage reactor: simulation and heat transfer optimization // International Journal of Hydrogen Energy. – 2018. – V. 43. – №. 29. – Pp. 13356-13372.

72. Moreno-Blanco J. et al. The cold high-pressure approach to hydrogen delivery // International Journal of Hydrogen Energy. – 2020. – V. 45. – №. 51. – Pp. 27369-27380.

73. de Miguel N. et al. The role of initial tank temperature on refuelling of on-board hydrogen tanks // International Journal of Hydrogen Energy. – 2016. – V. 41. – №. 20. – Pp. 8606-8615.


Review

For citations:


Gavrilov V.A., Leontiev A.V., Razakova R.I., Tsoy A.S. Development of hydrogen refueling stations: innovations and improvements in the context of global trends. Alternative Energy and Ecology (ISJAEE). 2025;(1):173-185. (In Russ.) https://doi.org/10.15518/isjaee.2025.01.173-185

Views: 235


ISSN 1608-8298 (Print)