Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Применение плоского зеркального отражения в фотоэлектрических системах

https://doi.org/10.15518/isjaee.2025.02.027-037

Аннотация

В данном исследовании предложен метод повышения облученности фотоэлектрических (ФЭ) модулей с использованием плоских зеркал, направленный на увеличение энергетической эффективности за счёт геометрическо-оптической оптимизации. Экспериментально изучено влияние ключевых параметров: угла наклона зеркала (θ = 15°-85°), расстояния между зеркалом и ФЭ модулем (r = 1-10 м) и площади отражения (A = 1-5 м²) на пространственное распределение эффективной облученности. Результаты показывают, что при оптимальных параметрах (θ = 75° ± 5°, r = 3,2-4,1 м) достигается прирост облученности около 12,7%. Эта работа представляет собой справочную основу для проектирования несложных систем усиления отражающей способности, адаптированных к фотоэлектрическим приложениям.

Об авторах

Лисуна Цинь
Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Цинь Лисун - аспирант УРФУ.

Екатеринбург, ул. Мира, 19



С. Е. Щеклеин
Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Щеклеин Сергей Евгеньевич - заведующий кафедрой «Атомные станции и возобновляемые источники энергии», профессор, доктор технических наук. Заслуженный энергетик России, лауреат Национальной экологической премии им. В. И. Вернадского.

Екатеринбург, ул. Мира, 19



Ю. Е. Немихин
Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
Россия

Немихин Юрий Евгеньевич - старший преподаватель.

Екатеринбург, ул. Мира, 19



Список литературы

1. Zhang Lei. Discussion on the design method of two-reflection multi-plane mirror concentrated solar photovoltaic system // Hefei University of Technology, 2009.

2. Fthenakis V. M., Kim H. C., Alsema E. Emissions from photovoltaic life cycles // Environmental science & technology, 2008, 42(6): 2168-2174.

3. Fthenakis V. M., Kim H. C. Photovoltaics: Life-cycle analyses // Solar Energy, 2011, 85(8): 1609-1628.

4. Peng J., Lu L., Yang H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems // Renewable and sustainable energy reviews, 2013, 19: 255-274.

5. Zou Jiaying. Design and research of multi-mirror concentrated solar photovoltaic system // Hefei University of Technology, 2013.

6. Wang Jianping, Zhang Lei. Discussion on the design method of two-reflection multi-mirror solar condenser // Energy Technology, 2009 (3):5.

7. Zamani H., Moghiman M., Kianifar A. Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM) // Renewable Energy, 2015, 81: 753-759.

8. Chen Nuofu, Bai Yiming. Concentrated photovoltaic system // Physics, 2007, 36(11): 862-868.

9. De Feo G., Forni M., Petito F. et al. Life cycle assessment and economic analysis of a low concentrating photovoltaic system // Environmental technology, 2016, 37(19): 2473-2482.

10. Sheng Fei. Research on key technologies of high efficiency concentrated solar cells and photovoltaic systems // Hubei University of Technology, 2015.

11. Pu Shaoxuan, Xia Chaofeng. Optical design of full-plane mirror reflecting solar condenser // Journal of Agricultural Engineering, 2011, 27(12): 282-285.

12. Yusuf A., Garcia D. A. Energy, exergy, economic, and environmental (4E) analysesofbifacialconcentratedthermoelectric-photovoltaicsystems // Energy, 2023, 282: 128921.

13. Lu Jiaqi, Zhang Ning, Yin Peng, etc. Research progress on the optical design type of solar photovoltaic condenser // Laser & Optoelectronics Progress, 2019, 56(23): 230002.

14. Jia Fuyun, Ma Mianjun, Sun Yanjie, etc. Optical design and optical efficiency of cylindrical Fresnel solar condenser lens // China Space Science and Technology, 2002, 22(6): 1-5.

15. Zhang Qian. Theoretical analysis and experimental research of linear Fresnel reflective solar condenser // University of Science and Technology of China, 2013.

16. Zhang Ming, Huang Liangfu, Luo Chongtai, An Dongliang, Sun Yanjie, Wang Duoshu, Guo Juntao. Design and optical efficiency of flat Fresnel lens for space use // Optoelectronic Engineering, 2001(05):18-21.

17. Korotkov V. V., Yavnov et al., Mitsura D. I. Solar collectors with a parabolic trough. A sustainable and efficient energy source // Bulletin of Science, 2024, 2(6 (75)): 2233-2240.

18. Bachhav C. Y., Sonawwanay P. D. Study on design and performance enhancement of Fresnel lens solar concentrator // Materials Today: Proceedings, 2022, 56: 2873-2879.

19. Zhang Yao. Optimized design of solar condenser mirror structure // University of Electronic Science and Technology, 2016.

20. Xu Hongyu, Xu Cheng, Wu Lining, Yang Yongping. Design and performance analysis of secondary reflector multi-dish solar concentrator // Acta Energiae Solaris Sinica, 2022, 43(10): 126-132.

21. Sadchikov N. A., Andreeva A. V. Linear Fresnel lenses with reduced chromatic aberration for space solar panels // Letters to the Journal of Technical Physics, 2023, 49(23): 59-61.

22. Pokotilov V. V., Rutkovsky M. A. Using solar energy to improve the energy efficiency of residential buildings: a reference guide // Minsk: UNDP/GEF, Department for Energy Efficiency of the State Standard of the Republic of Belarus. Belarus, 2015.

23. Sun Gang, Weng Ningquan, and Xiao Liming. Analysis on the statistical characteristics of atmospheric refractive index structure constant Cn~2 height distribution // Journal of Atmospheric and Environmental Optics, 2011, 6(02): 83-88.

24. Li P. J., Liu T. X., Qin Y. L. et al. Design and performance investigation of modified dual reflector parabolic trough collector with double planar mirrors // Science China Technological Sciences, 2024, 67(3): 902-918.

25. He Y. L., Wang K., Qiu Y. et al. Review of the solar flux distribution in concentrated solar power: Nonuniform features, challenges, and solutions // Applied Thermal Engineering, 2019, 149: 448-474.

26. Sun Gang, Weng Ningquan, Xiao Liming, Ma Chengsheng. Distribution characteristics and analysis of atmospheric refractive index structure constant in different regions // High Power Laser and Particle Beams, 2005(04):485-490.

27. Li S., Xu J., Lou J. et al. Mirror Surface Assessment in Solar Power Applications by 2-D Coded Light //iEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 3555-3565.

28. Zhang Kun, Luo Tao, Wang Fei-Fei, Sun Gang, Liu Qing, Qing Chun, Li Xuebin, Weng Ningquan, Zhu Wen-Yue. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data. Acta Phys. Sin., 2022, 71(8): 089202.

29. Marszałek K., Winkowski P., Jaglarz J. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings // Materials Science-Poland, 2014, 32: 80-87.

30. Kumar V. S. R. S. P., Kumar M., Kumari N. et al. Fabrication of Al2O3/SiO2 multilayer reflective filters with excellent uniformity for demanding optical interference filters // Materials research express, 2019, 6 (6): 066410.

31. Zeng T., Zhu M., Chai Y. et al. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces // Photonics Research, 2021, 9(2): 229-236.

32. Wan L., Yang J., Liu X. et al. Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm // Polish Journal of Chemical Technology, 2024, 26(2).

33. Gottschalk H., Saadi M. Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach // Computational Mechanics, 2019, 64: 895-915.

34. Martínez-Pañeda E., Deshpande V. S., Niordson C. F. et al. The role of plastic strain gradients in the crack growth resistance of metals // Journal of the Mechanics and Physics of Solids, 2019, 126: 136-150.

35. Shishvan S. S., Assadpour-asl S., Martinez-Paneda E. A mechanism-based gradient damage model for metallic fracture // Engineering Fracture Mechanics, 2021, 255: 107927.

36. Che Shuping. Research on the optical and heat collection properties of linear Fresnel reflection system // Shandong: Shandong University, 2012.

37. Qu Lixin. Environmental adaptability design of space mirror assembly // Photoelectric engineering, 2016, 43(5): 41-46.

38. Apostoleris H., Stefancich M., Chiesa M. Tracking-integrated systems for concentrating photovoltaics // Nature Energy, 2016, 1(4): 1-8.

39. Díaz-Báñez J. M., Higes-López J. M., PérezCutiño M. A. et al. Optimal energy collection with rotational movement constraints in concentrated solar power plants // European Journal of Operational Research, 2024, 317(2): 631-642.

40. Lorilla F. M. A., Barroca R. Challenges and recent developments in solar tracking strategies for concentrated solar parabolic dish //indones. J. Electr. Eng. Comput. Sci, 2022, 26(3): 1368-1378.


Рецензия

Для цитирования:


Цинь Л., Щеклеин С.Е., Немихин Ю.Е. Применение плоского зеркального отражения в фотоэлектрических системах. Альтернативная энергетика и экология (ISJAEE). 2025;(2):27-37. https://doi.org/10.15518/isjaee.2025.02.027-037

For citation:


Qin Q., Shcheklein S.E., Nemikhin Y.E. Application of plane mirror reflection in photovoltaic systems. Alternative Energy and Ecology (ISJAEE). 2025;(2):27-37. (In Russ.) https://doi.org/10.15518/isjaee.2025.02.027-037

Просмотров: 50


ISSN 1608-8298 (Print)