

Development of layout solutions for a hydrogen complex in combination with a nuclear power plant
https://doi.org/10.15518/isjaee.2025.03.027-045
Abstract
Previously, the authors substantiated the relevance of providing NPPs with base load in the context of their increasing share in the energy systems of Russia, according to the Strategy for the Development of Energy until 2035. As a solution to the problem, the authors proposed one of the options for providing NPPs with base load based on a combination with a hydrogen complex and an additional low-power steam turbine. In this paper, based on the norms and rules available in practice, as well as scientific developments of the authors of the article, two options for layout solutions for the main process rooms of the hydrogen complex are substantiated and capital investments in their construction are determined. The following layout options were considered: remote location of the hydrogen complex from the turbine hall with an additional turbine and relatively close location with underground and above-ground placement of the hydrogen and oxygen storage system.
About the Authors
A. N. BairamovRussian Federation
Artem Nicolaevich Bairamov, professor, doctor of technical science
department «Thermal and Nuclear Energy» named after A.I. Andryushchenko
410028; st. Worker, d. 24; 410054; st. Politekhnicheskaya, 77; Saratov
Education: Saratov State Technical University, 2007 year; Area of scientific interests: hydrogen energy, problems building of energy equipments, energy resourses savings, ecological clean and chemical-technological processes, modeling of technical systems, thermodinamics processes in technical systems, renewable and systems of direct transform energy; Рublications: 87; Н-index: 16; Scopus Author ID: 35224451800; Research ID: P-6565-2017
+7(8452)56-91-95
V. E. Yurin
Russian Federation
Valery Evgenievich Yurin, professor, leading researcher, Doctor of technical science
department «Thermal and Nuclear Energy» named after A. I. Andryushchenko
410028; st. Worker, d. 24; 410054; st. Politekhnicheskaya, 77; Saratov
Education: Saratov State Technical University, 2012; Area of scientific interests: fossil fuel energy systems, hydrogen energy, nuclear and radiation safety, thermal batteries; Publications: 131; H-index: 12; Scopus Author ID: 55802725400; Research ID: M-9073-2016
References
1. Russia’s energy strategy for the period until 2035 / Government of the Russian Federation. – Moscow, 2020 – 79 p.
2. Standard of the organization of OJSC «SEE». The norms for the participation of power units of nuclear power plants in normalized primary frequency regulation. – Introduction. 08/19/2013. – OJSC «SEE», 2013.
3. Egorov A. N., Yurin V. E., Moskalenko A. B. Study of the influence of the completeness of the combustion of a hydrogen-acid mixture on the technical and economic efficiency of the hydrogen energy complex at the nuclear power plant // A. N. Egorov, V. E. Yurin, A. B. Moskalenko // Alternative energy and ecology (ISJAEE). – 2024. – No. 4. – Pp. 86-98.
4. Single-phase La<sub>0,8</sub>Sr<sub>0,2</sub>Co<sub>1</sub> – xMn<sub>x</sub>O<sub>3</sub> – δ electrocatalyst as a triple H<sup>+</sup>/O<sup>2-</sup>/e<sup>-</sup> conductor enabling high-performance intermediate-temperature water electrolysis / N. Wang, C. Tang, L. Du, Z.-Q. Liu, W. Li, Z. Song, Y. Aoki, S. Ye // Journal of Materiomics. – 2022. – V. 8. – Is. 5. – Pp. 1020-1030.
5. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: status and challenges / L. Lin, S. Piao, Y. Choi, L. Lyu, H. Hong, D. Kim, J. Lee, W. Zhang, Y. Piao // Energy Chem. – 2022. – V. 4. – Is. 2. – P. 100072.
6. One-step controllable fabrication of 3D structured self-standing Al<sub>3</sub>Ni<sub>2</sub>/Ni electrode through molten salt electrolysis for efficient water splitting / Z. Hua, X. Wu, Z. Zhu, J. He, S. He, H. Liu, L. Xu, Y. Yang, Z. Zhao // Chem. Eng. – J. 2022. – V. 427. – P. 131743.
7. Cho K. M., Deshmukh P. R., Shin W. G. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis // Ultrason. Sonochem. – 2021. – V. 80. – P. 105796.
8. H<sub>2</sub>SO<sub>4</sub>-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis / L. Wan, Z. Xu, P. Wang, Y. Lin, B. Wang // Journal of Membrane Sci. – 2021. – V. 618. – P. 118642.
9. Novel polybenzimidazole/graphitic carbon nitride nanosheets composite membrane for the application of acid-alkaline amphoteric water electrolysis / B. Lv, Z. Shao, Z. Luan, Z. Huang, S. Sun, Y. Teng, C. Miu, Q. Gao // J. Energy Chem. – 2022. – V. 64. – Pp. 607-614.
10. Fe<sup>3+</sup>-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygencontaining functional groups in coal / S. Chen, W. Zhou, Y. Ding, G. Zhao, J. Gao // Energy. – 2021. – V. 220. – P. 119677.
11. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar / M. Sartory, E. Wallnöfer-Ogris, P. Salman, T. Fellinger, M. Justl, A. Trattner, M. Klell // International Journal of Hydrogen Energy. – 2017. – V. 42. – Is. 52. – Pp. 30493-30508.
12. Pressurized PEM water electrolysis: Efficiency and gas crossover / M. Schalenbach, M. Carmo, D. L. Fritz, J. Mergel, D. Stolten // International Journal of Hydrogen Energy. – 2013. – V. 38. – Is. 35. – Pp. 14921-14933.
13. Economic feasibility studies of high pressure PEM water electrolysis for distributed H<sub>2</sub> refueling stations / B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon, H. Lim // Energy Convers. Manage. – 2018. – V. 162. – Pp. 139-144.
14. Strengthening external magnetic fields with activated carbon graphene for increasing hydrogen production in water electrolysis / Purnami, N. Hamidi, M. N. Sasongko, D. Widhiyanuriyawan, I. N. G. Wardana // International Journal of Hydrogen Energy. – 2020. – V. 45. – Is. 38. – Pp. 19370-19380.
15. Porous electrode improving energy efficiency under electrode-normal magnetic field in water electrolysis / H. Liu, H. Xu, L. Pan, D. Zhong, Y. Liu // International Journal of Hydrogen Energy. – 2019. – V. 44. – Is. 41. – Pp. 22780-22786.
16. Experimental and numerical investigation of gas-liquid flow in water electrolysis under magnetic field / H. Liu, L. Pan, Q. Qin, P. Li // J. Electroanal. Chem. – 2019. – V. 832. – Pp. 293-302.
17. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies / D. Jang, J. Kim, D. Kim, W. - B. Han, S. Kang // Energy Convers. Manage. – 2022. – V. 258. – P. 115499.
18. High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane / S. Y. Kang, J. E. Park, G. Y. Jang, O. -H. Kim, O. J. Kwon, Y. -H. Cho, Y. -E. Sung // International Journal of Hydrogen Energy. – 2022. – V. 47. – Is. 15. – Pp. 9115-9126.
19. Wan L., Xu Z., Wang B. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis // Chem. Eng. J. – 2021. – V. 426. – P. 131340.
20. A 25 kW high temperature electrolysis facility for flexible hydrogen production and system integration studies / J. E. O’Briena, J. L. Hartvigsen, R. D. Boardman, J. J. Hartvigsen, D. Larsen, S. Elangovan // International Journal of Hydrogen Energy. – 2020. – V. 45. – Is. 32. – Pp. 15796-15804.
21. A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production / A. Buttler, R. Koltun, R. Wolf, H. Spliethoff // International Journal of Hydrogen Energy. – 2015. – V. 40. – Is. 1. – Pp. 38-50.
22. Mitrova T., Melnikov Yu., Chugunov D. Hydrogen economy – the path to low -carbon development / T. Mitrova, Yu. Melnikov, D. Chugunov. – Skolkovo. – 2019. – 62 p.
23. IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1,5 °C Climate Goal, International Renewable Energy Agency, Abu Dhabi [Electronic resource]. – Access mode: https://www.irena.org/-/media/Files/IRENA/Agency/Publicaion/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
24. Advances in hydrogen storage materials: harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions / Ahmed I. Osman [et.al.] // International Journal of Hydrogen Energy. – 2024. – Volume 67. – Pp. 1270-1294.
25. The survey of key technologies in hydrogen energy storage / Fan Zhang [et. al.] // International Journal of Hydrogen Energy. – 2016. – Volume 41. – Issue 33. – Pp. 14535-14552.
26. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies / Lei Zhang // Fuel. – 2024. – Volume 355. – P. 129455.
27. Is the H<sub>2</sub> economy realizable in the foreseeable future? Part II: H<sub>2</sub> storage, transportation, and distribution / Hassan Nazir [et. al.] // International Journal of Hydrogen Energy. – 2020. Volume 45. – Issue 41. – Pp. 20693-20708.
28. Hydrogen energy, economy and storage : Review and recommendation / J. O. Abe [et. al.] // International Journal of Hydrogen Energy. – 2019. – Volume 44. – Issue 29. – Pp. 15072-15086.
29. Bernard Chukwudi Tashie-Lewis. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy – A Technology Review / Bernard Chukwudi Tashie-Lewis, Somtochukwu Godfrey Nnabuife // Chemical Engineering Journal Advances. – 2021. – Volume 8. – P. 100172.
30. H. Barthelemy. Hydrogen storage: Recent improvements and industrial per-spectives / H. Barthelemy, M. Weber, F. Barbier // International Journal of Hydrogen Energy. – 2017. – Volume 42. – Issue 11. – Pp. 7254-7262.
31. Radosław Tarkowski. Salt domes in Poland e Potential sites for hydrogen storage in caverns / Radosław Tarkowski, Grzegorz Czapowski // International Journal of Hydrogen Energy. – 2018. – Volume 43. – Issue 46. – Pp. 21414-21427.
32. Radoslaw Tarkowski. Underground hydrogen storage: Characteristics and prospects / Radoslaw Tarkowski // Renewable and Sustainable Energy Reviews. – 2019. – Volume 105. – Pp. 86-94.
33. The survey of key technologies in hydrogen energy storage / Fan Zhang [et. al.] // International Journal of Hydrogen Energy. – 2016. – Volume 41. – Issue 33. – Pp. 14535-14552.
34. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies / Lei Zhang // Fuel. – 2024. – Volume 355. – P. 129455.
35. N. A. A. Rusman. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications / N. A. A. Rusman, M. Dahari // International Journal of Hydrogen Energy. – 2016. – Volume 41. – Issue 28. – Pp. 12108-12126.
36. Hydrogen energy, economy and storage : Review and recommendation / J. O. Abe [et. al.] // International Journal of Hydrogen Energy. – 2019. – Volume 44. – Issue 29. – Pp. 15072-15086.
37. Catalytically Enhanced Hydrogen Sorption in Mg-MgH<sub>2</sub> by Coupling Vanadium-Based Catalyst and Carbon Nanotubes / Atikah Kadri [et.al.] // Materials. – 2015. – № 8. – Pp 3491-3507.
38. Current research trends and perspectives on materials-based hydrogen storage solutions : A critical review / Jianwei Ren [et. al.] // International Journal of Hydrogen Energy. – 2017. – Volume 42. – Issue 1. – Pp. 289-311.
39. Porous materials for hydrogen storage / Zhijie Chen [et. al.] // Chem 8. – 2022. – Volume 8. – Issue 3. – Pp. 693-716.
40. Porous metal-organic frameworks for hydrogen storage / Dian Zhao [et. al.] // Chemical Communications. – 2022. – Volume 58. – Issue 79. – Pp. 11059-11078.
41. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications / Xuebin Yu // Progress in Materials Science. – 2017. – Volume 88. – Pp. 1-48.
42. Hydrogen Clathrates: Next Generation Hydrogen Storage Materials / Anshul Gupta [et. al.] // Energy Storage Materials. – 2021. – Volume 41. – Pp. 69-107.
43. Alekseeva O. K. Transportation of hydrogen / O. K. Alekseeva, S. I. Kozlov, V. N. Fateev // Transport on alternative fuel. – 2011. – No. 3 (21). –Pp. 18-24.
44. Regmi Y. N., Fornaciari J., Wei M., Myers D., Weber A. Z., Danilovic N. (2019). Experimental analysis of operating conditions of proton exchange membrane based unitized regenerative fuel cells for efficient and economic energy conversion // IOP Publishing. – 29, 1462.
45. Mayyas A. A., Chadly A., Amer S. T., Azar E. (2022). Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes // Energy, 239, Part A, 121941.
46. Chadly A., Azar E., Maalouf M., Mayyas A. (2022). Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings // Energy, 247, 123466.
47. Amicabile S., Testi M., Crema L. (2017). Design and modeling of a hybrid reversible solid oxide fuel cell – organic Rankine cycle // Energy Procedia, 129, 331-338.
48. Lamagna M., Nastasi B., Groppi D., Rozain C., Manfren M., Garcia D. A. (2021). Techno-economic assessment of reversible Solid Oxide Cell integration to renewable energy systems at building and district scale // Energy Conversion and Management, 235, 113993.
49. Peschka W. Hydrogen combustion in tomorrow’s energy technology // International Journal of Hydrogen Energy. – 1987. – V. 12. – № 10. – Pp. 481-499.
50. Sternfeld H. J., Heinrich P. A. Demonstration plant for the hydrogen/oxygen spinning reserve // International Journal of Hydrogen Energy. – 1989. – V. 14. Is. 10. – Pp. 703-716.
51. Tanneberger T. Combustion efficiency measurements and burner characterization in a hydrogenoxygen fuel combustor // International Journal of Hydrogen Energy. – 2019. – V. 44. – Is. 56. – Pp. 29752-29764.
52. Haller J. Link T. Thermodynamic concept for an efficient zero-emission combustion of hydrogen and oxygen in stationary internal combustion engines with high power density // International Journal of Hydrogen Energy. – 2017. – V. 42. – Is. 44. – Pp. 27374-27387.
53. Bebelin I. N. Development and study of an experimental hydrogen-acid steam generator with a capacity of 10 MW (T) // Heat power. – 1997. – No. 8. – Pp. 48-52.
54. Malyshenko S. P., Prigozhin V. I., Savich A. R., Labi A. I., Ilyichev V. A., Nazarova O. V. Effectiveness of the generation of steam in hydrogen-acid steam generators of megavatte power class // Heatophysics of high temperatures. – 2012. –V. 50. – No. 6. – Pp. 820-829.
55. Buildurin N. A. Experimental study of the process of combustion of mixtures of hydrogen acids and methane-acids in the midst of poorly redesigned water vapor // Heat power. – 2016. – No. 5. – Pp. 31-36.
56. Lu Q. Hetero-homogeneous combustion of premixed hydrogen-oxygen mixture in a micro-reactor with catalyst segmentation // International Journal of Hydrogen Energy. – 2016. – V. 41. – Is. 28. – Pp. 12387-12396.
57. Huang F., Kong W. Effects of hydrogen addition on combustion characteristics of a free-piston linear engine with glow-assisted ignition // International Journal of Hydrogen Energy. – 2021. – V. 46. – Is. 44. – Pp. 23040-23052.
58. Tang G. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia // International Journal of Hydrogen Energy. – 2021. – V. 46. – Is. 39. – Pp. 20765-20776.
59. Shi B. Rapidly mixed combustion of hydro-gen/oxygen diluted by N<sub>2</sub> and CO<sub>2</sub> in a tubular flame combustor // International Journal of Hydrogen Energy. – 2018. – V. 43. – Is. 31. – Pp. 14806-14815.
60. Metrow C., Gray S., Ciccarelli G. Detonation propagation through a nonuniform layer of hydrogen-oxygen in a narrow channel // International Journal of Hydrogen Energy. – 2021. – V. 46. – Is. 41. – Pp. 21726-21738.
61. Zhang F. Characterising premixed ammonia and hydrogen combustion for a novel Linear Joule Engine Generator // International Journal of Hydrogen Energy. – 2021. – V. 46. – Is. 44. – Pp. 23075-23090.
62. Zhao Y., McDonell V., Samuelsen S. Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen // International Journal of Hydrogen Energy. – 2020. – V. 45. – Is. 19. – Pp. 11368-11379.
63. Hydrogen. Properties, receipt, storage, transportation, application: reference. ed. / D. Yu. Hamburg [et al.]. – M.: Chemistry, 1989. – 672 p.
64. Yurin V. E. Determination of layout solutions for a developed reservation system for its own needs of nuclear power plants with a generation of generations III and III+ on the basis of additional multifunctional vocational schools / V. E. Yurin, D. Yu. Kuznetsov, A. N. Bayramov, D. M. Anoshin // Energy safety and energy conservation. – 2024. – No. 4. – Pp. 52-60.
65. Bairamov A. N. Development of scientific foundations for increasing the efficiency of nuclear power plants during combination with a hydrogen complex [Text] : dis. ... for the scientific degree of the doctor. tech. Sciences : 05.14.01 / Artem Nikolaevich Bairamov; scientific. Cons. R. Z. Aminov. – Saratov, 2022. – 397 p.
66. Safety rules in the production of hydrogen by electrolysis of water / A. A. Shatalov [et al.]. – M.: CJSC «Scientific and Technical Center for Research of Industrial Safety Problems», 2014. – 110 p.
67. Metallurgy of aluminum / Yu. V. Borisoglebsky [et al.]. – Novosibirsk: «Science». Siberian publishing company RAS. – 1999. – 438 p.
68. Rules for the device and safe operation of compressor installations with piston compressors operating on explosive and harmful gases (PB 03-582-03) // Russian newspaper. – 2003. – No. 120/1 (3234/1).
69. Bairamov A. N. Technical and economic aspects of the underground arrangement of metallic storage of hydrogen and oxygen as part of the hydrogen energy complex / A. N. Bairamov // Proceedings of Akadenergo. – 2014. – No. 2. – Pp. 79-86.
70. Bairamov A. N. Development and justification of the underground arrangement of metal containers of hydrogen and oxygen storage as part of the hydrogen energy complex / A. N. Bairamov // Problems of improving the fuel and energy complex: Sat. Scientific. tr. Issue 7. – Saratov: SSU Publishing House, 2012. – Pp. 18-27.
71. Granev V. V. Manual for the design of load-bearing and enclosing structures of industrial buildings for explosive industries / V. V. Granev, V. A. Korobkov, V. V. Shramko. – M.: Central Research and Design-Experimental Institute of Industrial Buildings and Structures, 1994. – 95 p.
72. Aminov R. Z. Explosion and fire hazard at nuclear power plants with hydrogen superstructures. Analysis of the problem and solutions of solutions / R. Z. Aminov, V. A. Khrustalev, A. V. Transtanyankin // Proceedings of the Academy of Energy. – 2013. – No. 3. – Pp. 41-51.
Review
For citations:
Bairamov A.N., Yurin V.E. Development of layout solutions for a hydrogen complex in combination with a nuclear power plant. Alternative Energy and Ecology (ISJAEE). 2025;(3):27-45. (In Russ.) https://doi.org/10.15518/isjaee.2025.03.027-045