

Development of a trigeneration atomic energy complex
https://doi.org/10.15518/isjaee.2025.03.067-082
Abstract
One of the promising ways to reduce the cost of low-power power products manufactured by atomic stations is the transition to combined production. This work presents the results of studies of the new technological scheme of the low-power nuclear power plant with a high-temperature gas-cooled nuclear reactor producing three types of energy products: electric and thermal energy, as well as hydrogen. Based on the results of mathematical modeling, it was found that the coefficient of the use of the heat of fuel of the proposed promising atomic energy complex reaches 78,7 %. In turn, the normalized cost of the joint production of hydrogen and heat is 12,3 % lower than the normalized cost of separate production of useful products.
Keywords
About the Authors
V. O. KindraRussian Federation
Vladimir Olegovich Kindra, Candidate of Technical Sciences, Associate Professor
111250; Krasnokazarmennaya str., 14, build. 1; Moscow
Education: Moscow Power Engineering Institute, 2015; Area of scientific interests: zero-emission technologies; oxy-fuel combustion; hydrogen energy; nuclear power plants; Publications: more than 200; Hi -index: 12; Researcher ID: C-6347-2014; Scopus ID: 57023993700
A. N. Rogalev
Russian Federation
Andrey Nikolaevich Rogalev, Doctor of Technical Sciences, Associate Professor, Head of Department
Department of Innovative Technologies for High-Tech Industries
111250; Krasnokazarmennaya str., 14, build. 1; Moscow
Education: Moscow Power Engineering Institute, 2009; Area of scientific interests: hydrogen combustion; thermal and nuclear power plants; zero-emission technologies; energy management; Publications: more than 200; Hi-index: 12; Researcher ID: M-8013-2016; Scopus ID: 34980078500
D. S. Kovalev
Russian Federation
Dmitriy Sergeevich Kovalev, post-graduate student, Assistant Professor
111250; Krasnokazarmennaya str., 14, build. 1; Moscow
Education: Moscow Power Engineering Institute, 2022; Area of scientific interests: nuclear energy; hydrogen technologies; environmental safety;
renewable energy; mechanical engineering; Publications: 10; Hi-index: 2; Scopus ID: 57426119300
I. V. Ilin
Russian Federation
Igor Vasilievich Ilin, Doctor of Economic Sciences, Professor, Director of the School, head of the laboratory
Graduate School of Business Engineering; laboratory CIRETEC-GT
195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district
Education: Leningrad State University named after. Zhdanova A. A., 1984; Area of scientific interests: renewable energy; enterprise architecture; business engineering; IT project management; digital solutions implementation projects; healthcare management; digital technologies in logistics; Publications: more than 400; Hi-index: 34; Researcher ID: J-6926-2013; Scopus ID: 57212553616
A. I. Levina
Russian Federation
Anastasia Ivanovna Levina, Doctor of Economic Sciences, Professor, Senior Researcher
Graduate School of Business Engineering; laboratory CIRETEC-GT
195251; st. Politekhnicheskaya, 29, litera B; St. Petersburg; ext. ter. Akademicheskoe Municipal district
Education: Peter the Great St. Petersburg Polytechnic University, 2005; Area of scientific interests: process management; project management; enterprise
architecture; business engineering; digital technologies in business; Publications: more than 250; Hi-index: 29; Researcher ID: K-7449-2015; Scopus ID: 5721034522
References
1. Report on the functioning of the Unified Energy System of Russia in 2023 | JSC «System Operator of the Unified Energy System» Available online: https://www.so-ups.ru/functioning/tech-disc/tech-disc2024/tech-disc2024ups/ (accessed on 11 June 2024).
2. Decree of the President of the Russian Federation of 26. 10. 2020 No. 645 (as amended on 02. 27. 2023) «On the Development Strategy of the Arctic Zone of the Russian Federation and ensuring national security for the period until 2035» / Consultant Plus [Electronic resource]. URL: https://www.consultant.ru/document/cons_doc_law_366065/ (date of application: 05. 09. 2023).
3. Rogalev N., Rogalev A., Kindra V., Zlyvko O., Osipov S. An Overview of Small Nuclear Power Plants for Clean Energy Production: Comparative Analysis of Distributed Generation Technologies and Future Perspectives: 13 // Energies. Multidisciplinary Digital Publishing Institute. – 2023, Vol. 16, № 13, p. 4899.
4. The list of initiatives of socio-economic development of the Russian Federation until 2030 / Consultant Plus [Electronic resource]. URL: https://www.consultant.ru/document/cons_doc_law_397326/ccc6888b95344cebdabd65ce8aeac4ab93bc8dd1a/ (date of 09. 09. 2023).
5. Voropay N. I., Saneyev B. G., Ivanova I. Yu., Izhbuldin A. K. Comparative efficiency of using low-power nuclear power plants in local energy systems in the east of Russia // BBK 31.19 A92, 2015, p. 59.
6. Ingersoll D. T., Carelli M. D. Handbook of Small Modular Nuclear Reactors: Second Edition // Woodhead Publishing. – 2020, p. 648
7. Advances in Small Modular Reactor Technology Developments. 2022 Edition: A Supplement to: IAEA Advanced Reactors Information System (ARIS). – Austria: IAEA, 2022, p. 424.
8. Locatelli G., Fiordaliso A., Boarin S., Ricotti M. E. Cogeneration: An option to facilitate load following in Small Modular Reactors // Progress in Nuclear Energy. – 2017. – V. 97. – Pp. 153-161.
9. Sinha R. K., Kakodkar A. Design and development of the AHWR – the Indian thorium fuelled innovative nuclear reactor // Nuclear Engineering and Design. – 2006. – V. 236. – № 7. – Pp. 683-700.
10. Pustovalov A. A. Nuclear thermoelectric power units in Russia, USA and European space agency research programs // XVI ICT ’97. Proceedings ICT’97. 16<sup>ер</sup> International Conference on Thermoelectrics (Cat. No.97TH8291), 1997, pp. 559-562.
11. Makaryan I. A., Sedov I. V. The state and prospects for the development of world hydrogen energy // Russian Chemical Journal. – 2021. – V. 65. – No. 2. – Pp. 3-21.
12. Rogalev N., Rogalev A., Kindra V., Zlyvko O., Kovalev D. Reforming Natural Gas for CO<sub>2</sub> Pre-Combustion Capture in Trinary Cycle Power Plant // Energies. – 2024. – V. 17. – № 22, 5544.
13. Parkinson B., Tabatabaei M., Upham D. C., Ballinger B., Greig C., Smart S. & McFarland E. Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals // International Journal of Hydrogen Energy. – 2018. – V. 43. – №. 5. – Pp. 2540-2555.
14. Takeda T., Shibata T. Survey on Research and Development Status of Japanese Small Modular Reactors in OECD/NEA Activities. – 2024.
15. Spivey H. D. Producing Power, Producing Space: The Geopolitical Economy of Electric Power Policy in Japan. – University of California, Los Angeles, 2022.
16. Rogalev N. D., Rogalev A. N., Kindra V. O., Kovalev D. S., Veger A. N. Development and modeling of the technological scheme for installing steam converting methane with oxygen burning of fuel and capturing carbon dioxide // Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics. – 2024. – V. 24, No. 6, pp. 1049-1058.
17. Morozova O. N., Pavlenko A. A., Titov S. S. Methods for obtaining hydrogen // South Siberian scientific messenger. Limited Liability Company Small Innovation Enterprise Polytechnic. – 2019, No. 4-1, pp. 188-194.
18. Ngarayana W. & Murakami K. Graded approach establishment for the htgr maintenance activities using modified fuzzy fmea & expert judgement methodology // In Journal of Physics: Conference Series. – 2022. – Vol. 2328, No. 1, p. 012005. IOP Publishing.
19. Iwatsuki J., Kunitomi K., Mineo H., Nishihara T., Sakaba N., Shinozaki M. & Yan X. Overview of high temperature gas-cooled reactor // In High temperature gas-cooled reactors. – 2021. – Pp. 1-16.
20. Safari F., Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production // Energy Conversion and Management. – 2020. – V. 205. – P. 112182.
21. Brown L. C., Besenbruch G. E., Schultz K. R., Showalter S. K., Marshall A. C., Pickard P. S., Funk J. F. High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power. – American Institute of Chemical Engineers New York, NY, USA. – 2002.
22. Sello M. The need for SMR in Lesotho and role of SMRs with various functions and features in achieving SDGs // Energy Strategy Reviews. – 2024. – Vol. 52. – P. 101343.
23. Harahap M. R., Harianto R. E., Aji B. Analysis of the influence of multi-module design of SMR Nuclear Power Plants on power reactor safety provisions in Indonesia. – 2023.
24. Sadeghi K. et al. Towards net-zero emissions through the hybrid SMR-solar cogeneration plant equipped with modular PCM storage system for seawater desalination // Desalination. – 2022. – Vol. 524. – P. 115476.
25. Aspen Technology, Inc. Aspen Plus. Available online: https://www.aspentech.com/en/products/engineering/aspen-plus (accessed on 19 July 2021).
26. Lemmon E. W., Bell I. H., Huber M. L., McLinden M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0, National Institute of Standards and Technology; Standard Reference Data Program: Gaithersburg, MA, USA, 2018.
27. Quirino P., Amaral A., Pontes K., Rossi F., Manenti F. Impact of kinetic models in the prediction accuracy of an industrial steam methane reforming unit. Comput. Chem. Eng. 2021, 152, 107379
28. Nian V. & Zhong S. Economic feasibility of flexible energy productions by small modular reactors from the perspective of integrated planning // Progress in Nuclear Energy. – 2020. – № 118, 103106.
29. Weidner T., Tulus V., Guillén-Gosálbez G. Environmental sustainability assessment of large-scale hydrogen production using prospective life cycle analysis // International Journal of Hydrogen Energy. – 2023. – V. 48. – №. 22. – Pp. 8310-8327.
30. GlobalPetrolPrices: Natural gas prices URL: https://www.globalpetrolprices.com/natural_gas_prices/ (дата обращения: 05. 09. 2023).
Review
For citations:
Kindra V.O., Rogalev A.N., Kovalev D.S., Ilin I.V., Levina A.I. Development of a trigeneration atomic energy complex. Alternative Energy and Ecology (ISJAEE). 2025;(3):67-82. (In Russ.) https://doi.org/10.15518/isjaee.2025.03.067-082