

The effect of different feeding rates of substrate pretreated in a vortex layer apparatus on dark fermentative biohydrogen production
https://doi.org/10.15518/isjaee.2025.03.083-102
Abstract
The dark fermentation (DF) process is of considerable interest for the production of biohydrogen from organic waste. However, industrial implementation of DF is still limited due to the insufficiently high efficiency of this process. In this work, the effect of different substrate feeding rates (1; 1,5 and 3 d-1, which corresponded to the time between loadings of 24, 16 and 8 h) in the DF bioreactor on the main characteristics of the process was investigated at a constant value of the hydraulic retention time (HRT) and organic loading rate (OLR) equal to 1 day and 24 g VS/(L day), respectively. To increase the overall hydrogen production rate and hydrogen yield, the substrate was pre-treated in a vortex layer apparatus (VLA). Hydrogen yield (HY), hydrogen production rate (HPR), hydrogen content (H2) in biogas and dissolved iron content in the substrate were the highest at a substrate feeding rate of 3 d-1 (8 h between substrate feeds) and amounted to 618 ± 225 ml/g VS, 14,84 ± 5,4 l/(l day), 54,8 ± 4,4 %, and 51,5 ± 38,9 mg/L, respectively. The main hydrogen producer in the microbial community (more than 80 %) was the genus Thermoanaerobacterium. Thus, it was demonstrated that the use of the highest feeding rate of the substrate (which corresponds to the shortest time between loadings) pretreated in the VLA provides the greatest stability and efficiency of the DF process. The obtained results are of significant importance for further improvement of the DF technology and can be applied when scaling the process in the future.
About the Authors
A. A. KovalevFederal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM»
Russian Federation
Andrey Alexandrovich Kovalev, chief researcher, doctor of technical sciences
laboratory of bioenergy technologies
109428; 1-y Institutskiy proezd, 5; Moscow
Education: Moscow state University of railway engineering (MIIT) 2009, engineer; Area of scientific interests: renewable energy; anaerobic digestion
of animal waste; biogas production from biomass heat and power plants;
heat and mass transfer. Publications: more than 200
+79263477955
D. A. Kovalev
Russian Federation
Dmitry Alexandrovich Kovalev, head of the laboratory, candidate of technical sciences
laboratory of bioenergy and supercritical technologies
109428; 1-y Institutskiy proezd, 5; Moscow
Education: Moscow state industrial University (MSIU) 2003, engineer; Area of scientific interests: renewable energy; anaerobic digestion of animal waste; technical innovations in agriculture and environmental protection; the production of biogas from biomass; Publications: more than 200
V. A. Panchenko
Russian Federation
Vladimir Anatolyevich Panchenko, candidate of technical sciences, associate professor, senior researcher
Laboratory of the Federal Scientific Agroengineering Center VIM
127994; ul. Obraztsova, d. 9; Moscow
Education: Moscow State Technical University named after N. E. Bauman, 2009, engineer; Area of scientific interests: renewable energy; 3D modeling; electric transport; circular economy and sustainable development; Publications: more than 300
Vivekanand Vivekanand
Malaviya National Institute of Technology
India
Vivekanand Vivekanand, Assistant Professor
Center for Energy and Environment
302017; Rajasthan; Jaipur
Area of scientific interests: biochemically oriented versatile biotechnologist in the area of lignocellulosic biomass, seaweed, dairy industry for bioenergy and biochemical production. Biomass, Bioenergy, Biogas, Sustainable Energy Resources; Publications: 63
Nidhi Pareek
Central University of Rajasthan
India
Nidhi Pareek, Assistant Professor
School of Life Sciences; Department of Microbiology; Laboratory of Microbial Catalysis and Process Engineering; Microbial Catalysis and Process Engineering Laboratory
305817; Rajasthan; Ajmer
Area of scientific interests: мicrobiology; marine biology; biotechnology; fermentation; biomass; bioenergy; biogas; sustainable energy resources; Publications: 53
Shyam Kumar Masakapalli
Indian Institute of Technology
India
Shyam Kumar Masakapalli, Assistant Professor
School of Basic Sciences; BioX Center
175075; Himachal Pradesh; Mandi; Kamand
Area of scientific interests: metabolic systems biology of plant and microbial systems. metabolomics and fluxomics approaches integrated with GC-MS and NMR platforms is allowing us to better understand cellular metabolic phenotypes. Challenging R & D projects are ongoing in the areas of cellular metabolism; phytochemistry; bioprocessing and agrotechnologies; Publications: 69
E. A. Zhuravleva
Russian Federation
Elena Alexandrovna Zhuravleva, researcher, postgraduate, PhD
Laboratory of Microbiology of Anthropogenic Habitats
119071; Leninsky Prospekt, building 33, building 2; Moscow
tel.: (495) 954-52-83
Education: Lomonosov Moscow State University, 2019, microbiologist; Area of scientific interests: anaerobic microorganisms; methanogenic communities of microorganisms; methanogenesis; organic waste; waste-water treatment; direct interspecies electron transfer; syntrophy; Publications: more than 30
A. A. Laikova
Russian Federation
Alexandra Alekseevna Laikova, junior researcher, PhD student
Laboratory of Microbiology of Anthropogenic Habitats
119071; Leninsky Prospekt, building 33, building 2; Moscow
tel.: (495) 954-52-83
Education: M. V. Lomonosov Moscow State University, 2023, Microbiologist; Area of scientific interests: biohydrogen; biogas; biohythane; sewage sludge; anaerobic fermentation; biotechnology; anaerobic conversion of waste; hydrogen-producing bacteria; methanogenic community; Publications: more than 15
S. V. Shekhurdina
Russian Federation
Svetlana Vitalievna Shekhurdina, junior researcher, PhD student
Laboratory of Microbiology of Anthropogenic Habitats
119071; Leninsky Prospekt, building 33, building 2; Moscow
Education: Lomonosov Moscow State University (MSU), 2021, Microbiologist; Area of scientific interests: anaerobic digestion, direct interspecies electron transfer (DIET), anaerobic microorganisms, methanogenic communities, methanogenesis, biogas, anaerobic processing of organic waste; Publications: more than 15
tel.: (495) 954-52-83
A. A. Ivanenko
Russian Federation
Artem Alexandrovich Ivanenko, engineer, bachelor
Department of Biology; Laboratory of Microbiology of Anthropogenic Habitats
119071; Leninsky Prospekt, building 33, building 2; 119899; Leninskie Gory, 1, building 12; Moscow
Education: M. V. Lomonosov State University, 2024, ecology and environmental management; Area of scientific interests: biogas; biohydrogen; anaerobic conversion of waste; biotechnology; methanogenic community; biorefinery; Publications: more than 5
tel.: (495) 954-52-83
Yu. V. Litti
Russian Federation
Yuri Vladimirovich Litti, Head of Laboratory, Candidate of Biological Sciences
Laboratory of Microbiology of Anthropogenic Habitats
119071; Leninsky Prospekt, building 33, building 2; Moscow
Education: D. Mendeleev University of Chemical Technology of Russia
(MUCTR) 2008, engineer; Area of scientific interests: anaerobic microorganisms; methanogenic communities of microorganisms;
methanogenesis; solid organic waste; wastewater treatment; nitrification; denitrification; anammox process; anammox bacteria; Publications: more than 80
tel.: (495) 954-52-83
References
1. Abu Hatab A., Cavinato M. E. R., Lindemer A., Lagerkvist C. -J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries : A Systematic Review of the Literature. Cities 2019; 94:129-142. doi: 10.1016/j.cities.2019.06.001.
2. United Nations Environment Programme 2021. Food Waste Index Report. – 2021. Nairobi.
3. Sinha S., Tripathi P. Trends and Challenges in Valorisation of Food Waste in Developing Economies: A Case Study of India. Case Studies in Chemical and Environmental Engineering. 2021; 4:100162. doi: 10.1016/j.cscee.2021.100162.
4. Filimonau V., Ermolaev V. A. A Sleeping Giant? Food Waste in the Foodservice Sector of Russia // Journal of Cleaner Production. – 2021; 297:126705. doi: 10.1016/j.jclepro.2021.126705.
5. Scherhaufer S., Moates G., Hartikainen H., Waldron K., Obersteiner G. Environmental Impacts of Food Waste in Europe // Waste Management. – 2018; 77:98-113. doi: 10.1016/j.wasman.2018.04.038.
6. Farizoglu B., Keskinler B., Yildiz E., Nuhoglu A. Simultaneous Removal of C, N, P from Cheese Whey by Jet Loop Membrane Bioreactor (JLMBR) // Journal of Hazardous Materials. – 2007; 146 (1):399-407. doi: 10.1016/j.jhazmat.2006.12.051.
7. Sampath P., Brijesh, Reddy K. R., Reddy C. V., Shetti N. P., Kulkarni R. V., Raghu A. V. Biohydrogen Production from Organic Waste – A Review // Chemical Engineering & Technology. – 2020; 43 (7):1240-1248. doi: 10.1002/ceat.201900400.
8. Yun Y. -M., Lee M. -K., Im S. -W., Marone A., Trably E., Shin S. -R., Kim M. -G., Cho S. -K., Kim D. -H. Biohydrogen Production from Food Waste: Current Status, Limitations, and Future Perspectives // Bioresource Technology. – 2018; 248:79-87. doi: 10.1016/j.biortech.2017.06.107.
9. Dauptain K., Trably E., Santa-Catalina G., Carrere H. Biomass Acid Pretreatment Impacts on Metabolic Routes and Bacterial Composition of Dark Fermentation Process // Waste Management. – 2024; 181:211-219. doi: 10.1016/j.wasman.2024.03.035.
10. Faggian L., Agostini S., Müller B., Gupte A. P., Favaro L. Efficient Production of Hydrogen through Bioaugmentation of the Organic Fraction of Municipal Solid Waste by the Newly Isolated Clostridium Sartagoforme SA1 // Bioresource Technology. – 2025; 415:131658. doi: 10.1016/j.biortech.2024.131658.
11. Laikova A., Zhuravleva E., Shekhurdina S., Ivanenko A., Biryuchkova P., Loiko N., Kryukov E., Kovalev A., Kovalev D., He C., Litti Y. The Intracellular Accumulation of Iron Coincides with Enhanced Biohydrogen Production by Thermoanaerobacterium Thermosaccharolyticum // Chemical Engineering Journal. – 2024; 497:154961. doi: 10.1016/j.cej.2024.154961.
12. Chen Y., Yin Y., Wang J. Comparison of Fermentative Hydrogen Production from Glycerol Using Immobilized and Suspended Mixed Cultures // International Journal of Hydrogen Energy. – 2021; 46 (13):8986-8994. doi: 10.1016/j.ijhydene.2021.01.003.
13. Rai P., Pandey A., Pandey A. Evaluation of Low Cost Immobilized Support Matrices in Augmentation of Biohydrogen Potential in Dark Fermentation Process Using B. Licheniformis AP1 // Fuel. – 2022; 310:122275. doi: 10.1016/j.fuel.2021.122275.
14. Atelge M. R., Atabani A. E., Banu J. R., Krisa D., Kaya M., Eskicioglu C., Kumar G., Lee C., Yildiz Y. Ş., Unalan S., Mohanasundaram R., Duman F. A Critical Review of Pretreatment Technologies to Enhance Anaerobic Digestion and Energy Recovery // Fuel. – 2020; 270:117494. doi: 10.1016/j.fuel.2020.117494.
15. Ndayisenga F., Yu Z., Zheng J., Wang B., Liang H., Phulpoto I. A., Habiyakare T., Zhou D. Microbial Electrohydrogenesis Cell and Dark Fermentation Integrated System Enhances Biohydrogen Production from Lignocellulosic Agricultural Wastes: Substrate Pretreatment towards Optimization // Renewable and Sustainable Energy Reviews. – 2021; 145:111078. doi: 10.1016/j.rser.2021.111078.
16. Kovalev А. A., Kovalev D. A., Panchenko V. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Ivanenko A. A., Litty Y. V. Energy Efficiency of Hydrogen Production during Dark Fermentation // International Journal of Hydrogen Energy. – 2024; 87:171-178. doi: 10.1016/j.ijhydene.2024.08.473.
17. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Yu V. L. Pretreatment of Anaerobic Fermentation Feedstock in a Vortex Layer Apparatus: Effect of the Working Chamber Ferromagnetic Core on Biogas Production // International Journal of Hydrogen Energy. – 2024; 57:764-768. doi: 10.1016/j.ijhydene.2024.01.053.
18. Kovalev A. A., Kovalev D. A., Karaeva J. V., Vivekanand V., Pareek N., Masakapalli S. K., Osmonov O. M., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Y. V. Innovative Organic Waste Pretreatment Approach for Efficient Anaerobic Bioconversion: Effect of Recirculation Ratio at Pre-Processing in Vortex Layer Apparatus on Biogas Production // International Journal of Hydrogen Energy. – 2024; 53:208-217. doi: 10.1016/j.ijhydene.2023.12.044.
19. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Biryuchkova P. D., Zhuravleva E. A., Vishnyakova A. V., Litti Y. V. Pretreatment in Vortex Layer Apparatus Boosts Dark Fermentative Hydrogen Production from Cheese Whey // Fermentation. – 2022. doi: 10.3390/fermentation8120674.
20. Kovalev А. А., Kovalev D. А., Panchenko V. A., Zhuravleva Е. А., Laikova А. А., Shekhurdina S. V., Vivekanand V., Litti Y. V. Approbation of an Innovative Method of Pretreatment of Dark Fermentation Feedstocks // International Journal of Hydrogen Energy. – 2022; 47 (78):33272-33281. doi: 10.1016/j.ijhydene.2022.08.051.
21. Mikheeva E. R., Katraeva I. V., Kovalev A. A., Kovalev D. A., Litti Y. V. Effects of Pretreatment in a Vortex Layer Apparatus on the Properties of Confectionery Wastewater and Its Dark Fermentation // International Journal of Hydrogen Energy. – 2022; 47 (55):23165-23174. doi: 10.1016/j.ijhydene.2022.05.183.
22. Dolat M., Murali R., Zarei M., Zhang R., Pincam T., Liu Y.-Q., Sadhukhan J., Bywater A., Short M. Dynamic Feed Scheduling for Optimised Anaerobic Digestion: An Optimisation Approach for Better Decision-Making to Enhance Revenue and Environmental Benefits // Digital Chemical Engineering. – 2024; 13:100191. doi: 10.1016/j.dche.2024.100191.
23. Xi J., Fang W., Zhang H., Zhang J., Xu H., Zheng M. Promotion of Polyhydroxyalkanoates-Producing Granular Sludge Formation by Lactic Acid Using Anaerobic Dynamic Feeding Process // Journal of Biotechnology. – 2024; 395:84-94. doi: 10.1016/j.jbiotec.2024.09.010.
24. Ezieke A. H., Serrano A., Peces M., Clarke W., Villa-Gomez D. Effect of Feeding Frequency on the Anaerobic Digestion of Berry Fruit Waste // Waste Management. – 2024; 178:66-75. doi: 10.1016/j.wasman.2024.02.011.
25. Yulisa A., Park S. H., Chairattanawat C., Hwang S. Effect of Feeding Strategies on the Start-up of Anaerobic Digestion of Fish Waste // Energy. – 2023; 280:128199. doi: 10.1016/j.energy.2023.128199.
26. Dolat M., Murali R., Zhang R., Zarei M., Zhang D., Zhang D., Sadhukhan J., Short M. Optimal Feed Scheduling and Co-Digestion for Anaerobic Digestion Sites with Dynamic Demands. In 34 European Symposium on Computer Aided Process Engineering / 15 International Symposium on Process Systems Engineering / Manenti F., Reklaitis G. V. B. T. -C. A. C. E., Eds. // Elsevier. – 2024. – Vol. 53, pp 1705-1710. doi: 10.1016/B978-0-443-28824-1.50285-4.
27. Egwu U., Onyelowe K., Tabraiz S., Johnson E., Mutshow A. D. Investigation of the Effect of Equal and Unequal Feeding Time Intervals on Process Stability and Methane Yield during Anaerobic Digestion Grass Silage // Renewable and Sustainable Energy Reviews. – 2022; 158:112092. doi: 10.1016/j.rser.2022.112092.
28. Manser N. D., Mihelcic J. R., Ergas S. J. Semi-Continuous Mesophilic Anaerobic Digester Performance under Variations in Solids Retention Time and Feeding Frequency // Bioresource Technology. – 2015; 190:359-366. doi: 10.1016/j.biortech.2015.04.111.
29. Simonetti S., Collie-Duguid E., Martín C. F., Louis P., Pu J., Smith E., Dionisi D. Effect of Feed Concentration and Residence Time on Anaerobic Fermentation in CSTR and SBR to Produce Short-Chain Organic Acids // Journal of Environmental Chemical Engineering. – 2023; 11 (5):110461. doi: 10.1016/j.jece.2023.110461.
30. He J., Zhang W., Liu X., Xu N., Xiong P. Optimization of Prehydrolysis Time and Substrate Feeding to Improve Ethanol Production by Simultaneous Saccharification and Fermentation of Furfural Process Residue // Journal of Bioscience and Bioengineering. – 2016; 122 (5):563-569. doi: 10.1016/j.jbiosc.2016.04.012.
31. Kovalev A. A., Kovalev D. A., Litti Y. V., Katraeva I. V. Biohydrogen Production in the Two-Stage Process of Anaerobic Bioconversion of Organic Matter of Liquid Organic Waste with Recirculation of Digister Effluent // International Journal of Hydrogen Energy. – 2020; 45 (51):26831-26839. doi: 10.1016/j.ijhydene.2020.07.124.
32. Carrillo-Reyes J., Buitrón G., Moreno-Andrade I., Tapia-Rodríguez A. C., Palomo-Briones R., Razo-Flores E., Aguilar-Juárez O., Arreola-Vargas J., Bernet N., Braga A. F. M., Braga L., Castelló E., Chatellard L., Etchebehere C., Fuentes L., León-Becerril E., Méndez-Acosta H. O., Ruiz-Filippi G., Tapia-Venegas E., Trably E., Wenzel J., Zaiat M. Standardized Protocol for Determination of Biohydrogen Potential // Methods X. – 2020; 7:100754. doi: 10.1016/j.mex.2019.11.027.
33. Begmatov S., Dorofeev A., Kadnikov V., Beletsky A., Pimenov N., Ravin N., Mardanov A. The Structure of Microbial Communities of Activated Sludge of Large-Scale Wastewater Treatment Plants in the City of Moscow // Scientific Reports. – 2022; 12. doi: 10.1038/s41598-022-07132-4.
34. Casanova-Mina A. A., Suárez-Vázquez S. I., Acuña-Askar K., Alfaro-Barbosa J. M., Cruz-López A. Continuous Dark Fermentation by Industrial Food Waste-water: The Effect of Hydraulic Retention Time on Hydrogen Production and Microbial Variation // Biomass Conversion and Biorefinery. – 2024; 14 (19):23909-23920. doi: 10.1007/s13399-023-04596-w.
35. Elbeshbishy E., Dhar B. R., Nakhla G., Lee H. -S. A Critical Review on Inhibition of Dark Biohydrogen Fermentation // Renewable and Sustainable Energy Reviews. – 2017; 79:656-668. doi: 10.1016/j.rser.2017.05.075.
36. Liu D., Min B., Angelidaki I. Biohydrogen Production from Household Solid Waste (HSW) at Extreme-Thermophilic Temperature (70 °C) – Influence of pH and Acetate Concentration // International Journal of Hydrogen Energy. – 2008; 33 (23):6985-6992. doi: 10.1016/j.ijhydene.2008.08.059.
37. Yin Y., Song W., Wang J. Inhibitory Effect of Acetic Acid on Dark-Fermentative Hydrogen Production // Bioresource Technology. – 2022; 364:128074. doi: 10.1016/j.biortech.2022.128074.
38. Chen Y., Yin Y., Wang J. Influence of Butyrate on Fermentative Hydrogen Production and Microbial Community Analysis // International Journal of Hydrogen Energy. – 2021; 46 (53):26825-26833. doi: 10.1016/j.ijhydene.2021.05.185.
39. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Katraeva I. V., Panchenko V., Fiore U., Litti Y. V. Two-Stage Anaerobic Digestion with Direct Electric Stimulation of Methanogenesis: The Effect of a Physical Barrier to Retain Biomass on the Surface of a Carbon Cloth-Based Biocathode // Renewable Energy. – 2022; 181:966-977. doi: 10.1016/j.renene.2021.09.097.
40. Turon V., Trably E., Fouilland E., Steyer J. - P. Potentialities of Dark Fermentation Effluents as Substrates for Microalgae Growth : A Review // Process Biochemistry. – 2016; 51 (11):1843-1854. doi: 10.1016/j.procbio.2016.03.018.
41. Rajesh Banu J., Kavitha S., Yukesh Kannah R., Bhosale R. R., Kumar G. Industrial Wastewater to Biohydrogen: Possibilities towards Successful Biorefinery Route // Bioresource Technology. – 2020; 298:122378. doi: 10.1016/j.biortech.2019.122378.
42. Hwang M. H., Jang N. J., Hyun S. H., Kim I. S. Anaerobic Bio-Hydrogen Production from Ethanol Fermentation: The Role of pH // Journal of Biotechnology. – 2004; 111 (3):297-309. doi: 10.1016/j.jbiotec.2004.04.024.
43. Sarangi P. K., Nanda S. Biohydrogen Production Through Dark Fermentation // Chemical Engineering & Technology. – 2020; 43 (4):601-612. doi: 10.1002/ceat.201900452.
44. Albuquerque M. M., Sartor G. de B., Martinez-Burgos W. J., Scapini T., Edwiges T., Soccol C. R., Medeiros A. B. P. Biohydrogen Produced via Dark Fermentation : A Review // Methane. – 2024; 3 (3):500-532. doi: 10.3390/methane3030029.
45. Jain R., Panwar N. L., Jain S. K., Gupta T., Agarwal C., Meena S. S. Bio-Hydrogen Production through Dark Fermentation : An Overview // Biomass Conversion and Biorefinery. – 2024; 14 (12):12699-12724. doi: 10.1007/s13399-022-03282-7.
46. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Litti Y. V. The Feasibility of Single-Stage Biohythane Production in a Semi-Continuous Thermophilic Bioreactor: Influence of Operating Parameters on the Process Kinetics and Microbial Community Dynamics // International Journal of Hydrogen Energy. – 2024; 55:1486-1494. doi: 10.1016/j.ijhydene.2023.12.140.
47. Ren Y., Si B., Liu Z., Jiang W., Zhang Y. Promoting Dark Fermentation for Biohydrogen Production: Potential Roles of Iron-Based Additives // International Journal of Hydrogen Energy. – 2022; 47 (3):1499-1515. doi: 10.1016/j.ijhydene.2021.10.137.
48. Dessì P., Porca E., Waters N. R., Lakaniemi A.-M., Collins G., Lens P. N. L. Thermophilic versus Mesophilic Dark Fermentation in Xylose-Fed Fluidised Bed Reactors: Biohydrogen Production and Active Microbial Community // International Journal of Hydrogen Energy. – 2018; 43 (11):5473-5485. doi: 10.1016/j.ijhydene.2018.01.158.
49. Mugnai G., Borruso L., Mimmo T., Cesco S., Luongo V., Frunzo L., Fabbricino M., Pirozzi F., Cappitelli F., Villa F. Dynamics of Bacterial Communities and Substrate Conversion during Olive-Mill Waste Dark Fermentation: Prediction of the Metabolic Routes for Hydrogen Production // Bioresource Technology. – 2021; 319:124157. doi: 10.1016/j.biortech.2020.124157.
50. Xiong Z., Hussain A., Lee J., Lee H.-S. Food Waste Fermentation in a Leach Bed Reactor: Reactor Performance, and Microbial Ecology and Dynamics // Bioresource Technology 2019; 274:153-161. doi: 10.1016/j.biortech.2018.11.066.
51. Tang T., Chen Y., Liu M., Du Y., Tan Y. Effect of PH on the Performance of Hydrogen Production by Dark Fermentation Coupled Denitrification // Environmental Research. – 2022; 208:112663. doi: 10.1016/j.envres.2021.112663.
52. Bundhoo M. A. Z., Mohee R., Hassan M. A. Effects of Pre-Treatment Technologies on Dark Fermentative Biohydrogen Production : A Review // Journal of Environmental Management. – 2015; 157:20-48. doi: 10.1016/j.jenvman.2015.04.006.
53. Gomez-Romero J., Gonzalez-Garcia A., Chairez I., Torres L., García-Peña E. I. Selective Adaptation of an Anaerobic Microbial Community: Biohydrogen Production by Co-Digestion of Cheese Whey and Vegetables Fruit Waste // International Journal of Hydrogen Energy. – 2014; 39 (24):12541-12550. doi: 10.1016/j.ijhydene.2014.06.050.
54. Litti Y. V., Kovalev D. A., Kovalev A. A., Merkel A. Y., Vishnyakova A. V., Russkova Y. I., Nozhevnikova A. N. Auto-Selection of Microorganisms of Sewage Sludge Used as an Inoculum for Fermentative Hydrogen Production from Different Substrates // International Journal of Hydrogen Energy. – 2021; 46 (58):29834-29845. doi: 10.1016/j.ijhydene.2021.06.174.
55. Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Zhuravleva E. A., Katraeva I. V., Grigoriev V. S., Litti Y. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process // International Journal of Hydrogen Energy. – 2021; 46 (80):39688-39699. doi: 10.1016/j.ijhydene.2021.09.239.
56. Zhang M., Zhang L., Tian S., Zhu S., Chen Z., Si H. The Effect of Zero-Valent Iron/Fesup>3+</sup> Coupling and Reuse on the Properties of Anoxic Sludge // Journal of Cleaner Production 2022; 344:131031. doi: 10.1016/j.jclepro.2022.131031.
57. Arisht S. N., Roslan R., Gie G. A., Mahmod S. S., Sajab M. S., Lay C.-H., Wu S. -Y., Ding G. -T., Jamali N. S., Jahim J. M., Abdul P. M. Effect of Nano Zero-Valent Iron (NZVI) on Biohydrogen Production in Anaerobic Fermentation of Oil Palm Frond Juice Using Clostridium Butyricum JKT37 // Biomass and Bioenergy. – 2021; 154:106270. doi: 10.1016/j.biombioe.2021.106270.
58. Yin Y., Wang J. Enhanced Biohydrogen Production from Macroalgae by Zero-Valent Iron Nanoparticles: Insights into Microbial and Metabolites Distribution // Bioresource Technology. – 2019; 282:110-117. doi: 10.1016/j.biortech.2019.02.128.
59. Andronikou M., Christoforou P., Constantinou D., Charalambous P., G. Samanides C., Karachaliou P., Vyrides I. Critical Role of Bicarbonate in Zero-Valent Iron for Hydrogen Generation and Biogas Upgrading in Anaerobic Digestion // Bioresource Technology. – 2025; 132236. doi: 10.1016/j.biortech.2025.132236.
Review
For citations:
Kovalev A.A., Kovalev D.A., Panchenko V.A., Vivekanand V., Pareek N., Masakapalli Sh.K., Zhuravleva E.A., Laikova A.A., Shekhurdina S.V., Ivanenko A.A., Litti Yu.V. The effect of different feeding rates of substrate pretreated in a vortex layer apparatus on dark fermentative biohydrogen production. Alternative Energy and Ecology (ISJAEE). 2025;(3):83-102. (In Russ.) https://doi.org/10.15518/isjaee.2025.03.083-102