

Unlocking biodegradation of major components of produced fluids
https://doi.org/10.15518/isjaee.2025.04.091-125
Abstract
While hydraulic fracturing has become a cornerstone of modern oil production, the sustainable management of its polysaccharide-rich waste fluids remains a significant research challenge. This review investigates the feasibility of employing dark fermentation as a bio-based technology for the degradation of these fluids and the concomitant production of biohydrogen. We provide a comprehensive overview of the dark fermentation process and delineate the key structural features of fracturing fluid polysaccharides relevant to their microbial breakdown. Moreover, the current state of knowledge concerning the microorganisms involved in this anaerobic bioconversion was evaluated. Significantly, critical knowledge gaps and propose potential research directions were identified, particularly focusing on pre-treatment methodologies to overcome the inherent recalcitrance of certain polysaccharides and optimize biohydrogen yields from these industrial waste streams.
About the Authors
A. A. IvanenkoRussian Federation
Artem A. Ivanenko - engineer in Laboratory of Microbiology of Anthropogenic Habitats, bachelor.
119071, Moscow, Leninsky Prospekt, building 33, building 2; 119899, Moscow, Leninskie Gory, 1, building 12
Researcher ID JAX-4154-2023
A. A. Laikova
Russian Federation
Alexandra A. Laikova - junior researcher in Laboratory of Microbiology of Anthropogenic Habitats, PhD student.
119071, Moscow, Leninsky Prospekt, building 33, building 2
Researcher ID IVU-7977-2023, Scopus Author ID 58044317600
E. A. Zhuravleva
Russian Federation
Elena A. Zhuravleva - researcher Laboratory of Microbiology of Anthropogenic Habitats, postgraduate. PhD.
119071, Moscow, Leninsky Prospekt, building 33, building 2
Researcher ID JBS-4297-2023, Scopus Author ID 57216346570
S. V. Shekhurdina
Russian Federation
Svetlana V. Shekhurdina - junior researcher of Laboratory of Microbiology of Anthropogenic Habitats, PhD student.
119071, Moscow, Leninsky Prospekt, building 33, building 2
Scopus Author ID 57564192200, Researcher ID JZW-4863-2024
S. N. Parshina
Russian Federation
Sofia N. Parshina - Laboratory of Microbiology of Anthropogenic Habitats, PhD.
119071, Moscow, Leninsky Prospekt, building 33, building 2
ResearcherID A-8607-2014, Scopus ID 35511680900
V. V. Potokina
Russian Federation
Victoriya V. Potokina - Laboratory of Microbiology of Anthropogenic Habitat.
119071, Moscow, Leninsky Prospekt, building 33, building 2
Scopus ID 57364304400
A. A. Kovalev
Federal State Budgetary Scientific Institution «Federal Scientific Agroengineering Center VIM»
Russian Federation
Andrey A. Kovalev - chief researcher of the laboratory of bioenergy technologies, doctor of technical sciences.
109428, Moscow, 1-y Institutskiy proezd, 5
Researcher ID F-7045-2017, Scopus Author ID 57205285134
D. A. Kovalev
Russian Federation
Dmitry A. Kovalev - head of the laboratory of bioenergy and supercritical technologies, candidate of technical sciences.
109428, Moscow, 1-y Institutskiy proezd, 5
Researcher ID K-4810-2015
I. A. Rybkin
Russian Federation
Iaroslav A. Rybkin – Petrochemical Scientist.
117105, Moscow, Varshavskoe shosse, 9 p., 1B
M. V. Orlov
Russian Federation
Maxim V. Orlov – Program Director of Advanced Materials.
117105, Moscow, Varshavskoe shosse, 9 p., 1B
M. Alahmari
Saudi Arabia
Manar Alahmari - Petrochemical Scientist.
34466, Dhahran
Yu. V. Litti
Russian Federation
Yuri V. Litti – Head of Laboratory of Microbiology of Anthropogenic Habitats, Candidate of Biological Sciences.
119071, Moscow, Leninsky Prospekt, building 33, building 2
Researcher ID C-4945-2014, Scopus Author ID 59312651000
+7(926)369-92-43
References
1. Chen B., Barboza B. R., Sun Y., Bai J., Thomas H. R., Dutko M. et al. A Review of Hydraulic Fracturing Simulation // Archives of Computational Methods in Engineering. 2021. 294. 2021;29:1-58. https://doi.org/10.1007/S11831-021-09653-Z.
2. Luek J. L., Gonsior M. Organic compounds in hydraulic fracturing fluids and wastewaters: A review // Water Resources. 2017; 123:536-48. https://doi.org/10.1016/J.WATRES.2017.07.012.
3. Barati R., Liang J. T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells // Journal of Applied Polymer Science. 2014; 131. https://doi.org/10.1002/APP.40735.
4. Kreipl M. P., Kreipl A. T. Hydraulic fracturing fluids and their environmental impact: then, today, and tomorrow // Environmental Earth Sciences. 2017;76:1-16. https://doi.org/10.1007/s12665-017-6480-5.
5. Ferrer I., Thurman E. M. Chemical constituents and analytical approaches for hydraulic fracturing waters // Trends in Environmental Analytical Chemistry. 2015; 5:18-25. https://doi.org/10.1016/J.TEAC.2015.01.003.
6. Faroughi S. A., Pruvot A. J. C. J., McAndrew J. The rheological behavior of energized fluids and foams with application to hydraulic fracturing: Review // Journal of Petroleum Science and Engineering. 2018; 163:243-63. https://doi.org/10.1016/J.PETROL.2017.12.051.
7. Stringfellow W. T., Domen J. K., Camarillo M. K., Sandelin W. L., Borglin S. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing // Journal of Hazardous Materials. 2014;275:37-54. https://doi.org/10.1016/J.JHAZMAT.2014.04.040.
8. Nianyin L., Yu J., Daocheng W., Chao W., Jia K., Pingli L. et al. Development status of crosslinking agent in high-temperature and pressure fracturing fluid: A review // Journal of Natural Gas Science and Engineering. 2022; 107:104369. https://doi.org/10.1016/J.JNGSE.2021.104369.
9. Stringfellow W. T., Camarillo M. K., Domen J. K., Sandelin W. L., Varadharajan C., Jordan P. D. et al. Identifying chemicals of concern in hydraulic fracturing fluids used for oil production // Environ Pollut. 2017; 220:413-20. https://doi.org/10.1016/J.ENVPOL.2016.09.082.
10. He Y., Flynn S. L., Folkerts E. J., Zhang Y., Ruan D., Alessi D. S. et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water // Water Resources. 2017;114:78-87. https://doi.org/10.1016/J.WATRES.2017.02.027.
11. Zhang L., Hascakir B. A review of issues, characteristics, and management for wastewater due to hydraulic fracturing in the U. S. // Journal of Petroleum Science and Engineering. 2021; 202. https://doi.org/10.1016/J.PETROL.2021.108536.
12. Rosenblum J. S., Sitterley K. A., Thurman E. M., Ferrer I., Linden K. G. Hydraulic fracturing wastewater treatment by coagulation-adsorption for removal of organic compounds and turbidity // Journal of Environmental Chemical Engineering. 2016; 4:1978-84. https://doi.org/10.1016/J.JECE.2016.03.013.
13. Hagos K., Zong J., Li D., Liu C., Lu X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives // Renewable and Sustainable Energy Review. 2017; 76:1485-96. https://doi.org/10.1016/J.RSER.2016.11.184.
14. Chavan S., Yadav B., Atmakuri A., Tyagi R. D., Wong J. W. C., Drogui P. Bioconversion of organic wastes into value-added products: A review // Bioresource Technology. 2022; 344:126398. https://doi.org/10.1016/J.BIORTECH.2021.126398.
15. Jacob S., Upadrasta L., Banerjee R. Bottlenecks in biomethane production from agro-industrial wastes through anaerobic digestion // Green Energy Technology. 2020:75-104. https://doi.org/10.1007/978-81-322-3965-9_5.
16. Ivanenko A. A., Laikova A. A., Zhuravleva E. A., Shekhurdina S. V., Vishnyakova A. V., Kovalev A. A. et al. Biological production of hydrogen: From basic principles to the latest advances in process improvement // Internetaional Journal of Hydrogen Energy. 2024; 55:740-55. https://doi.org/10.1016/J.IJHYDENE.2023.11.179.
17. Li H., Cheng J., Xia R., Dong H., Zhou J. Electron syntrophy between mixed hydrogenogens and Geobacter metallireducens boosted dark hydrogen fermentation: Clarifying roles of electroactive extracellular polymeric substances // Bioresource Technology. 2024; 395:130350. https://doi.org/10.1016/J.BIORTECH.2024.130350.
18. Sivaramakrishnan R., Shanmugam S., Sekar M., Mathimani T., Incharoensakdi A., Kim SH. et al. Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield // Fuel. 2021; 291:120136. https://doi.org/10.1016/J.FUEL.2021.120136.
19. Cheng J., Li H., Ding L., Zhou J., Song W., Li Y. Y. et al. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism // Chemical Engineering Journal. 2020; 397:125394. https://doi.org/10.1016/J.CEJ.2020.125394.
20. Zhuravleva E.A., Shekhurdina S. V., Kotova I. B., Loiko N. G., Popova N. M., Kryukov E. et al. Effects of various materials used to promote the direct interspecies electron transfer on anaerobic digestion of low-concentration swine manure // Science of the Total Environment. 2022; 839:156073. https://doi.org/10.1016/J.SCITOTENV.2022.156073.
21. Bastidas-Oyanedel J. R., Bonk F., Thomsen M. H., Schmidt J. E. Dark fermentation biorefinery in the present and future (bio)chemical industry // Reviews in Environmental Science and Bio-Technology. 2015; 14:473-98. https://doi.org/10.1007/s11157-015-9369-3.
22. Zhang F., Zhang Y., Chen M., Van Loosdrecht M. C. M., Zeng R. J. A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy // Biotechnology and Bioengineering. 2013; 110:1884-94. https://doi.org/10.1002/BIT.24855.
23. Ren Y., Si B., Liu Z., Jiang W., Zhang Y. Promoting dark fermentation for biohydrogen production: Potential roles of iron-based additives // Internetaional Journal of Hydrogen Energy. 2022; 47:1499-515. https://doi.org/10.1016/J.IJHYDENE.2021.10.137.
24. Laikova A. A., Zhuravleva E. A., Kovalev A. A., Shekhurdina S. V., Parshina S. N., Litti Yu. V. Biohydrogen Production by Mono-Versus Co- and Mixed Cultures. 2024:83-123. https://doi.org/10.1007/978-3-031-49818-3_5.
25. Akaniro I. R., Oladipo A. A., Onwujekwe E. C. Metabolic engineering approaches for scale-up of fermentative biohydrogen production. A review // Internetaional Journal of Hydrogen Energy. 2024;52:240-64. https://doi.org/10.1016/J.IJHYDENE.2023.04.328.
26. Hallenbeck PC. Fundamentals of the fermentative production of hydrogen. Water Sci Technol 2005;52:21–9. https://doi.org/10.2166/WST.2005.0494.
27. Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, et al. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 2012;5:1–15. https://doi.org/10.1186/1754-6834-5-35.
28. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, et al. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 2018;91:665–94. https://doi.org/10.1016/J.RSER.2018.04.043.
29. Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA. Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew Sustain Energy Rev 2020;117:109484. https://doi.org/10.1016/J.RSER.2019.109484.
30. Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022;13:6521–57. https://doi.org/10.1080/21655979.2022.2035986.
31. Mohanakrishna G, Sneha NP, Rafi SM, Sarkar O. Dark fermentative hydrogen production: Potential of food waste as future energy needs. Sci Total Environ 2023;888:163801. https://doi.org/10.1016/J.SCITOTENV.2023.163801.
32. Cappelletti M, Zannoni D, Postec A, Ollivier B. Members of the Order Thermotogales: From Microbiology to Hydrogen Production 2014:197–224. https://doi.org/10.1007/978-94-017-8554-9_9.
33. Gupta N, Pal M, Sachdeva M, Yadav M, Tiwari A. Thermophilic biohydrogen production for commercial application: the whole picture. Int J Energy Res 2016;40:127–45. https://doi.org/10.1002/ER.3438.
34. Saravanan A, Senthil Kumar P, Khoo KS, Show PL, Femina Carolin C, Fetcia Jackulin C, et al. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresour Technol 2021;342:126021. https://doi.org/10.1016/J.BIORTECH.2021.126021.
35. Dȩbowski M., Korzeniewska E., Filipkowska Z., Zieliński M., Kwiatkowski R. Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria // Internetaional Journal of Hydrogen Energy. 2014; 39:1972-8. https://doi.org/10.1016/J.IJHYDENE.2013.11.082.
36. Zieliński M., Korzeniewska E., Filipkowska Z., Dębowski M., Harnisz M., Kwiatkowski R. Biohydrogen production at low load of organic matter by psychrophilic bacteria. Energy 2017;134:1132–9. https://doi.org/10.1016/J.ENERGY.2017.05.119.
37. Cisneros de la Cueva S., Alvarez Guzmán C. L., Balderas Hernández V. E., De León Rodríguez A. Optimization of biohydrogen production by the novel psychrophilic strain N92 collected from the Antarctica // Internetaional Journal of Hydrogen Energy. 2018; 43:13798-809. https://doi.org/10.1016/J.IJHYDENE.2017.11.164.
38. Azbar N., Dokgöz F. T., Keskin T., Eltem R., Korkmaz K. S., Gezgin Y. et al. Comparative Evaluation of Bio-Hydrogen Production From Cheese Whey Waste-water Under Thermophilic and Mesophilic Anaerobic Conditions. Int J Green Energy 2009;6:192–200. https://doi.org/10.1080/15435070902785027.
39. Ferreira T. B., Rego G. C., Ramos L. R., Soares L. A., Sakamoto I. K., de Oliveira L. L. et al. Selection of metabolic pathways for continuous hydrogen production under thermophilic and mesophilic temperature conditions in anaerobic fluidized bed reactors // Internetaional Journal of Hydrogen Energy. 2018; 43:18908-17. https://doi.org/10.1016/J.IJHYDENE.2018.08.177.
40. Kothari R., Singh D. P., Tyagi V. V., Tyagi S. K. Fermentative hydrogen production – An alternative clean energy source. Renew Sustain Energy Rev 2012;16:2337–46. https://doi.org/10.1016/J.RSER.2012.01.002.
41. Pachapur V. L., Kutty P., Pachapur P., Brar S. K., Le Bihan Y., Galvez-Cloutier R. et al. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies 2019, Vol 12, Page 530 2019;12:530. https://doi.org/10.3390/EN12030530.
42. Wang A., Ren N., Shi Y., Lee D. J. Bioaugmented hydrogen production from microcrystalline cellulose using co-culture-Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49 // Internetaional Journal of Hydrogen Energy. 2008; 33:912-7. https://doi.org/10.1016/J.IJHYDENE.2007.10.017.
43. Laikova A., Zhuravleva E., Shekhurdina S., Ivanenko A., Biryuchkova P., Loiko N. et al. The intracellular accumulation of iron coincides with enhanced biohydrogen production by Thermoanaerobacterium thermosaccharolyticum. Chem Eng J 2024;497:154961. https://doi.org/10.1016/J.CEJ.2024.154961.
44. Bu J., Ju X., Liang L., Zhao Q., Wei Y., Wu H. Molecular mechanism of boosted hydrogen production by Thermoanaerobacterium thermosaccharolyticum with biochar revealed by transcriptome analysis. Chem Eng J 2024; 500:156903. https://doi.org/10.1016/J.CEJ.2024.156903.
45. Gomez-Flores M., Nakhla G., Hafez H. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose // AMB Express. 2017;7:1-12. https://doi.org/10.1186/s13568-016-0256-2.
46. Ntaikou I., Gavala H. N., Lyberatos G. Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus: Definition of metabolism and kinetics during growth on glucose // Internetaional Journal of Hydrogen Energy. 2009; 34:3697-709. https://doi.org/10.1016/J.IJHYDENE.2009.02.057.
47. Pachapur V. L., Sarma S. J., Brar S. K., Le Bihan Y., Buelna G., Verma M. Biological hydrogen production using co-culture versus mono-culture system. Environ Technol Rev 2015; 4:55-70. https://doi.org/10.1080/21622515.2015.1068381.
48. Maru B. T., López F., Kengen S. W. M., Constantí M., Medina F. Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. // Fuel. 2016; 186:375-84. https://doi.org/10.1016/J.FUEL.2016.08.043.
49. Zhang C., Kang X., Liang N., Abdullah A. Improvement of Biohydrogen Production from Dark Fermentation by Cocultures and Activated Carbon Immobilization // Energy and Fuels. 2017; 31:12217-22. https://doi.org/10.1021/ACS.ENERGYFUELS.7B02035.
50. Elsharnouby O., Hafez H., Nakhla G., El Naggar M. H. A critical literature review on biohydrogen production by pure cultures // Internetaional Journal of Hydrogen Energy. 2013; 38:4945-66. https://doi.org/10.1016/J.IJHYDENE.2013.02.032.
51. Tondro H., Musivand S., Zilouei H., Bazarganipour M., Zargoosh K. Biological production of hydrogen and acetone-butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum // Biomass and Bioenergy. 2020; 142:105818. https://doi.org/10.1016/J.BIOMBIOE.2020.105818.
52. Ramírez-Morales J. E., Tapia-Venegas E., Toledo-Alarcón J., Ruiz-Filippi G. Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 2015; 71:1271-85. https://doi.org/10.2166/WST.2015.104.
53. Hsiao C. L., Chang J. J., Wu J. H., Chin W. C., Wen F. S., Huang C. C. et al. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles // Internetaional Journal of Hydrogen Energy. 2009; 34:7173-81. https://doi.org/10.1016/J.IJHYDENE.2009.06.028.
54. Litti Yu. V., Kovalev D. A., Kovalev A. A., Merkel A. Y., Vishnyakova A. V., Russkova Y. I. et al. Auto-selection of microorganisms of sewage sludge used as an inoculum for fermentative hydrogen production from different substrates // Internetaional Journal of Hydrogen Energy. 2021; 46:29834-45. https://doi.org/10.1016/j.ijhydene.2021.06.174.
55. Sivagurunathan P., Kumar G., Bakonyi P., Kim S. H., Kobayashi T., Xu K. Q. et al. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems // Internetaional Journal of Hydrogen Energy. 2016; 41:3820-36. https://doi.org/10.1016/J.IJHYDENE.2015.12.081.
56. Cabrol L., Marone A., Tapia-Venegas E., Steyer J. -P., Ruiz-Filippi G., Trably E. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 2017; 043:158-81. https://doi.org/10.1093/femsre/fuw043.
57. Fang H. H. P., Zhang T., Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 2002; 58:112-8. https://doi.org/10.1007/s00253-001-0865-8.
58. Bakonyi P., Nemestóthy N., Simon V., Bélafi-Bakó K. Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew Sustain Energy Rev 2014; 40:806-13. https://doi.org/10.1016/J.RSER.2014.08.014.
59. Demirel B., Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev Environ Sci Biotechnol 2008; 7:173-90. https://doi.org/10.1007/s11157-008-9131-1.
60. Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Zhuravleva E. A., Katraeva I. V., Grigoriev V. S. et al. Effect of low digestate recirculation ratio on biofuel and bioenergy recovery in a two-stage anaerobic digestion process // Internetaional Journal of Hydrogen Energy. 2021; 46:39688-99. https://doi.org/10.1016/J.IJHYDENE.2021.09.239.
61. Hawkes F. R., Dinsdale R., Hawkes D. L., Hussy I. Sustainable fermentative hydrogen production: challenges for process optimisation // Internetaional Journal of Hydrogen Energy. 2002; 27:1339-47. https://doi.org/10.1016/S0360-3199(02)00090-3.
62. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P. N. L. et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy 2015; 144:73-95. https://doi.org/10.1016/J.APENERGY.2015.01.045.
63. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Litti Yu. V. The feasibility of single-stage biohythane production in a semi-continuous thermophilic bioreactor: Influence of operating parameters on the process kinetics and microbial community dynamics // Internetaional Journal of Hydrogen Energy. 2024; 55:1486-94. https://doi.org/10.1016/j.ijhydene.2023.12.140.
64. Okonkwo O., Escudie R., Bernet N., Mangayil R., Lakaniemi A. M., Trably E. Bioaugmentation enhances dark fermentative hydrogen production in cultures exposed to short-term temperature fluctuations. Appl Microbiol Biotechnol 2020; 104:439-49. https://doi.org/10.1007/s00253-019-10203-8.
65. Sheng T., Meng Q., Wen X., Sun C., Yang L., Li L. Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste. J Chem Technol Biotechnol 2021; 96:1623-31. https://doi.org/10.1002/JCTB.6682.
66. Laikova A. A., Zhuravleva E. A., Kovalev A. A., Kovalev D. A., Shekhurdina S. V., Ivanenko A. A. et al. Substrate Composition and Effects on Biohydrogen Production 2024:181-214. https://doi.org/10.1007/978-3-031-49818-3_8.
67. Bundhoo M. A. Z., Mohee R., Hassan M. A. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J Environ Manage 2015; 157:20-48. https://doi.org/10.1016/J.JENVMAN.2015.04.006.
68. Quéméneur M., Bittel M., Trably E., Dumas C., Fourage L., Ravot G. et al. Effect of enzyme addition on fermentative hydrogen production from wheat straw// Internetaional Journal of Hydrogen Energy. 2012; 37:10639-47. https://doi.org/10.1016/J.IJHYDENE.2012.04.083.
69. Bundhoo M. A. Z., Mohee R. Inhibition of dark fermentative bio-hydrogen production: A review // Internetaional Journal of Hydrogen Energy. 2016; 41:6713-33. https://doi.org/10.1016/J.IJHYDENE.2016.03.057.
70. Cheng J., Lin R., Song W., Xia A., Zhou J., Cen K. Enhancement of fermentative hydrogen production from hydrolyzed water hyacinth with activated carbon detoxification and bacteria domestication // Internetaional Journal of Hydrogen Energy. 2015; 40:2545-51. https://doi.org/10.1016/J.IJHYDENE.2014.12.097.
71. Giang T. T., Lunprom S., Liao Q., Reungsang A., Salakkam A. Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment. PeerJ 2019; 2019:e6637. https://doi.org/http://dx.doi.org/10.7717/peerj.6637.
72. Berdugo-Clavijo C., Scheffer G., Sen A., Gieg L. M. Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application. Polym. – 2022. – Vol 14. – Page 1871. 2022; 14:1871. https://doi.org/10.3390/POLYM14091871.
73. Xin D., Yin H., Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. Bioresour Technol 2024; 401:130719. https://doi.org/10.1016/J.BIORTECH.2024.130719.
74. Mandal S., Hwang S., Shi S. Q. Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. Int J Biol Macromol 2023; 226:368-82. https://doi.org/10.1016/J.IJBIOMAC.2022.12.039.
75. Thombare N., Jha U., Mishra S., Siddiqui M. Z. Guar gum as a promising starting material for diverse applications: A review. Int J Biol Macromol 2016; 88:361-72. https://doi.org/10.1016/J.IJBIOMAC.2016.04.001.
76. Hasan A. M. A., Abdel-Raouf M. E. Applications of guar gum and its derivatives in petroleum industry: A review. Egypt J Pet 2018; 27:1043-50. https://doi.org/10.1016/J.EJPE.2018.03.005.
77. Sharma G., Sharma S., Kumar A., Al-Muhtaseb A. H., Naushad M., Ghfar A. A. et al. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr Polym 2018; 199:534-45. https://doi.org/10.1016/J.CARBPOL.2018.07.053.
78. George A., Shah P. A., Shrivastav P. S. Guar gum: Versatile natural polymer for drug delivery applications. Eur Polym J 2019; 112:722-35. https://doi.org/10.1016/J.EURPOLYMJ.2018.10.042.
79. Kaith B. S., Sharma R., Kalia S. Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. Int J Biol Macromol 2015; 75:266-75. https://doi.org/10.1016/J.IJBIOMAC.2015.01.046.
80. Mittal H., Kumar V., Alhassan S. M., Ray S. S. Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Int J Biol Macromol 2018; 114:283-94. https://doi.org/10.1016/J.IJBIOMAC.2018.03.131.
81. Guo H., Shi S., Li G., Ji C., Fu C., Shen Y. et al. Biodegradation of guar gum and its enhancing effect on biogas production from coal // Fuel. 2022; 311:122606. https://doi.org/10.1016/J.FUEL.2021.122606.
82. Badwaik H. R., Kumari L., Maiti S., Sakure K., Ajazuddin., Nakhate K. T. et al. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int J Biol Macromol 2022; 209:2197-212. https://doi.org/10.1016/J.IJBIOMAC.2022.04.201.
83. Zhong C., Chen R., Liu B., Pu S., Hou D. Trends in polyacrylamide utilization and treatment for hydraulic fracturing. Npj Mater Sustain – 2024. – 21. 2024;2:1-9. https://doi.org/10.1038/s44296-024-00019-7.
84. Thakur V., Dhiman S., Singh T. G., Bhatia R., Awasthi A. The Cutting Edge Quest: Epic Saga of Carboxymethyl Guar Gum in Drug Delivery and Roads Ahead. Polym Adv Technol 2025; 36:e70119. https://doi.org/10.1002/PAT.70119.
85. Dalei G., Das S. Carboxymethyl guar gum: A review of synthesis, properties and versatile applications. Eur Polym J 2022; 176:111433. https://doi.org/10.1016/J.EURPOLYMJ.2022.111433.
86. Lei C., Clark P. E. Crosslinking of Guar and Guar Derivatives. SPE J 2007; 12:316-21. https://doi.org/10.2118/90840-PA.
87. Nsengiyumva E. M., Heitz M. P., Alexandridis P. Carboxymethyl hydroxypropyl guar gum physicochemical properties in dilute aqueous media. Int J Biol Macromol 2024; 262:129775. https://doi.org/10.1016/J.IJBIOMAC.2024.129775.
88. Kubareva A. R., Kozhevnikova E. Y., Shnyreva A. V., Barkov A. V., Topolyuk Y. A., Grishina I. N. et al. Biodegradation of Guar Gum in Hydraulic Fracturing Fluid under the Action of Enzyme Preparations of Basidiomycetes. Appl Biochem Microbiol 2022; 58:938-45. https://doi.org/10.1134/S0003683822080051.
89. Elcheninov A. G., Menzel P., Gudbergsdottir S. R., Slesarev A. I., Kadnikov V. V., Krogh A. et al. Sugar metabolism of the first thermophilic planctomycete Thermogutta terrifontis: Comparative genomic and transcriptomic approaches. Front Microbiol 2017; 8. https://doi.org/10.3389/FMICB.2017.02140/FULL.
90. Lyutova L. V., Naumova E. S. Comparative Analysis of Fermentation of Lactose and its Components, Glucose and Galactose, by Interstrain Hybrids of Dairy Yeast Kluyveromyces lactis. Appl Biochem Microbiol 2023; 59:1150-6. https://doi.org/10.1134/S0003683823090119.
91. Rainey F. A., Donnison A. M., Janssen P. H., Saul D., Rodrigo A., Bergquist P. L. et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: An obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 1994; 120:263-6. https://doi.org/10.1111/J.1574-6968.1994.TB07043.X.
92. Hamilton-Brehm S. D., Mosher J. J., Vishnivetskaya T., Podar M,. Carroll S., Allman S. et al. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from obsidian pool, yellowstone National Park. Appl Environ Microbiol 2010; 76:1014-20. https://doi.org/10.1128/AEM.01903-09.
93. Li Y. F., Calley J. N., Ebert P. J., Helmes E. B. Paenibacillus lentus sp. nov., a β-mannanolytic bacterium isolated from mixed soil samples in a selective enrichment using guar gum as the sole carbon source. Int J Syst Evol Microbiol 2014; 64:1166-72. https://doi.org/10.1099/ijs.0.054726-0.
94. Shivaji S., Chaturvedi P., Suresh K., Reddy G. S. N., Dutt C. B. S., Wainwright M. et al. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 2006; 56:1465-73. https://doi.org/10.1099/ijs.0.64029-0.
95. Ma X., Song P., Liu L., Da Q., Lei G., Yao C. et al. Low-temperature pH-regulable gel-breaking of galactomannan-based fracturing fluids by the mannanase from Bacillus aerius. Int Biodeterior Biodegradation 2021; 160:105226. https://doi.org/10.1016/J.IBIOD.2021.105226.
96. Ma X., Wang Z., Da Q., Cheng M., Yao C., Lei G. Application of Guar Gum Degrading Bacteria in Microbial Remediation of Guar-Based Fracturing Fluid Damage. Energy and Fuels 2017; 31:7894-903. https://doi.org/10.1021/ACS.ENERGYFUELS.7B00999.
97. Podosokorskaya O. A., Kochetkova T. V., Novikov A. A., Toshchakov S. V., Elcheninov A. G., Kublanov I. V. Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia. Syst Appl Microbiol 2020; 43:126126. https://doi.org/10.1016/J.SYAPM.2020.126126.
98. Podosokorskaya O. A., Elcheninov A. G., Klyukina A. A., Merkel A. Y. Ignisphaera cupida sp. nov., a hyperthermophilic hydrolytic archaeon from a hot spring of Uzon (Kamchatka), and emended description of the genus Ignisphaera. Syst Appl Microbiol 2024;47. https://doi.org/10.1016/J.SYAPM.2024.126541.
99. Zayulina K. S., Prokofeva M. I., ElcheninovA. G., Voytova M. P., Novikov A. A., Kochetkova T. V. et al. Arenimonas fontis sp. Nov., a bacterium isolated from chukotka hot spring, Arctic Region, Russia. Int J Syst Evol Microbiol 2020; 70:2726-31. https://doi.org/10.1099/ijsem.0.004099.
100. Zayulina K. S., Elcheninov A. G., Toshchakov S. V., Kochetkova T. V., Novikov A. A., Blamey J. M. et al. Novel hyperthermophilic crenarchaeon Infirmifilum lucidum gen. nov. sp. nov., reclassification of Thermofilum uzonense as Infirmifilum uzonense comb. nov. and assignment of the family Thermofilaceae to the order Thermofilales ord. nov. Syst Appl Microbiol 2021;44:126230. https://doi.org/10.1016/J.SYAPM.2021.126230.
101. Akyon B., Lipus D., Bibby K. Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water. Sci Total Environ 2019; 666:1161-8. https://doi.org/10.1016/J.SCITOTENV.2019.02.056.
102. Lester Y., Yacob T., Morrissey I., Linden K. G. Can We Treat Hydraulic Fracturing Flowback with a Conventional Biological Process? The Case of Guar Gum. Environ Sci Technol Lett 2013; 1:133-6. https://doi.org/10.1021/ez4000115.
103. Noack J., Timm D., Hospattankar A., Slavin J. Fermentation profiles of wheat dextrin, Inulin and partially hydrolyzed guar gum using an in Vitro digestion pretreatment and in Vitro batch fermentation system model. Nutrients 2013; 5:1500-10. https://doi.org/10.3390/nu5051500.
104. Ma X., Guang Lun L., Chuanjin Y., Zi L. C., Zhihui W., Mingming C. Isolation and Identification of Thermophilic Bacteria of Guar Gum Biodegradation for Potential Use in Enzyme Breaker 2016:706-11. https://doi.org/10.2991/ICCTE-16.2016.119.
105. Das N., Triparthi N., Basu S., Bose C., Maitra S., Khurana S. Progress in the development of gelling agents for improved culturability of microorganisms. Front Microbiol 2015;6:147147. https://doi.org/10.3389/fmicb.2015.00698.
106. Wang X., Yan X., Liu Y., Song Z., Mayo K. H., Sun L. et al. Preparation and identification of galacto-mannooligosaccharides generated from guar gum by a recombinant β-mannanase from Bacteroides fragilis (BF0736). Food Hydrocoll 2024;152:109893. https://doi.org/10.1016/J.FOODHYD.2024.109893.
107. Xia X., Wei H., Hu L., Peng J. Hydratability and improved fermentability in vitro of guar gum by combination of xanthan gum. Carbohydr Polym 2021; 258:117625. https://doi.org/10.1016/J.CARBPOL.2021.117625.
108. Soni H., Ganaie M. A., Pranaw K., Kango N. Design-of-experiment strategy for the production of mannanase biocatalysts using plam karnel cake and its application to degrade locust bean and guar gum. Biocatal Agric Biotechnol 2015; 4:229-34. https://doi.org/10.1016/J.BCAB.2015.01.001.
109. Prajapat A. L., Gogate P. R. Depolymerization of guar gum solution using different approaches based on ultrasound and microwave irradiations. Chem Eng Process Process Intensif 2015; 88:1-9. https://doi.org/10.1016/J.CEP.2014.11.018.
110. Prajapat A. L., Subhedar P. B., Gogate P. R. Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution. Ultrason Sonochem 2016; 29:84-92. https://doi.org/10.1016/J.ULTSONCH.2015.09.009.
111. Li B., Guo H., Chen Z., Xu Q., Xia D., Lv J. et al. Metabolism mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum. Sci Total Environ 2024; 946:174085. https://doi.org/10.1016/J.SCITOTENV.2024.174085.
112. Liang J., Wang Q., Yoza B. A., Li Q. X., Ke M., Chen C. Degradation of guar in an up-flow anaerobic sludge blanket reactor: Impacts of salinity on performance robustness, granulation and microbial community. Chemosphere 2019; 232:327-36. https://doi.org/10.1016/J.CHEMOSPHERE.2019.05.178.
113. Liang J., Wang Q., Li J., Guo S., Ke M., Gamal El-Din M. et al. Effects of anaerobic granular sludge towards the treatment of flowback water in an upflow anaerobic sludge blanket bioreactor: Comparison between mesophilic and thermophilic conditions. Bioresour Technol 2021;326:124784. https://doi.org/10.1016/J.BIORTECH.2021.124784.
114. Dzionek A., Wojcieszyńska D., Guzik U. Use of xanthan gum for whole cell immobilization and its impact in bioremediation – a review. Bioresour Technol 2022; 351:126918. https://doi.org/10.1016/J.BIORTECH.2022.126918.
115. Nejadmansouri M., Shad E., Razmjooei M., Safdarianghomsheh R., Delvigne F., Khalesi M. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochem Eng J 2020; 157. https://doi.org/10.1016/J.BEJ.2020.107554.
116. Zheng Z., Sun Z., Li M., Yang J., Yang Y., Liang H. et al. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281. https://doi.org/10.1016/J.IJBIOMAC.2024.136562.
117. Nsengiyumva E. M., Alexandridis P. Xanthan gum in aqueous solutions: Fundamentals and applications. Int J Biol Macromol 2022; 216:583-604. https://doi.org/10.1016/J.IJBIOMAC.2022.06.189.
118. Abu Elella M. H., Goda E. S., Gab-Allah M. A., Hong S. E., Pandit B., Lee S. et al. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J Environ Chem Eng 2021; 9. https://doi.org/10.1016/J.JECE.2020.104702.
119. Berezina O. V., Rykov S. V., Schwarz W. H., Liebl W. Xanthan: enzymatic degradation and novel perspectives of applications. Appl Microbiol Biotechnol 2024; 108:1-28. https://doi.org/10.1007/s00253-024-13016-6.
120. Kool M. Enzymatic modification and characterization of xanthan 2014.
121. Onofre-Rentería K., Cabrera-Munguía D. A., Cobos-Puc L. E., Claudio-Rizo J. A., Morales-Oyervides L., Oyervides-Muñoz E. Xanthan Gum Production and Its Modifications to Obtain Novel Applications: A Review. Polym Adv Technol 2024;35:e70004. https://doi.org/10.1002/pat.70004.
122. Jadav M., Pooja D., Adams D. J., Kulhari H. Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics 2023;15. https://doi.org/10.3390/pharmaceutics15020402.
123. Klimek D., Herold M., Calusinska M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 2024;25:1-16. https://doi.org/10.1186/s12864-024-10413-z.
124. Podosokorskaya O. A., Elcheninov A. G., Gavrilov S. N., Petrova N. F., Klyukina A. A., Zavarzina D. G. et al. New Representatives of the Class Ignavibacteria Inhabiting Subsurface Aquifers of Yessentuki Mineral Water Deposit. Water (Switzerland) 2023;15:3451. https://doi.org/10.3390/W15193451/S1.
125. Kovaleva O. L., Elcheninov A. G., Toshchakov S. V., Novikov A. A., Bonch-Osmolovskaya E. A., Kublanov I. V. Tautonia sociabilis gen. Nov., sp. nov., a novel thermotolerant planctomycete, isolated from a 4000 m deep subterranean habitat. Int J Syst Evol Microbiol 2019; 69:2299-304. https://doi.org/10.1099/IJSEM.0.003467.
126. Slobodkina G. B., Kovaleva O. L., Miroshnichenko M. L., Slobodkin A. I., Kolganova T. V., Novikov A. A. et al. Thermogutta terrifontis gen. Nov., sp. nov. and thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum planctomycetes. Int J Syst Evol Microbiol 2015;65:760-5. https://doi.org/10.1099/IJS.0.000009.
127. Podosokorskaya O. A., Petrova N. F., Tikhonova E. N., Klyukina A. A., Elcheninov A. G. Rosettibacter primus gen. nov., sp. nov., and Rosettibacter firmus sp. nov., facultatively anaerobic moderately thermophilic bacteria of the class Ignavibacteria from hot springs of North Ossetia. Syst Appl Microbiol 2024;47. https://doi.org/10.1016/J.SYAPM.2024.126528.
128. Dedysh S. N., Beletsky A. V., Ivanova A. A., Kulichevskaya I. S., Suzina N. E, Philippov D. A. et al. Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative. Environ Microbiol 2021; 23:1510-26. https://doi.org/10.1111/1462-2920.15360.
129. Podosokorskaya O. A., Elcheninov A. G., Novikov A. A., Merkel A. Y., Kublanov I. V. Fontisphaera persica gen. nov., sp. nov., a thermophilic hydrolytic bacterium from a hot spring of Baikal lake region, and proposal of Fontisphaeraceae fam. nov., and Limisphaeraceae fam. nov. within the Limisphaerales ord. nov. (Verrucomicrobiota). Syst Appl Microbiol 2023;46:126438. https://doi.org/10.1016/J.SYAPM.2023.126438.
130. Ostrowski M. P., La Rosa S. L., Kunath B. J., Robertson A., Pereira G., Hagen L. H. et al. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nat Microbiol – 2022. – 74. 2022; 7:556-69. https://doi.org/10.1038/s41564-022-01093-0.
131. Zhurishkina E. V., Eneyskaya E. V., Shvetsova S. V., Yurchenko L. V., Bobrov K. S, Kulminskaya A. A. Whole-Cell PVA Cryogel-Immobilized Microbial Consortium LE-C1 for Xanthan Depolymerization. Catal – 2023. – Vol. 13. – Page 1249. 2023; 13:1249. https://doi.org/10.3390/CATAL13091249.
132. Muchová M., Růžička J., Julinová M., Doležalová M., Houser J., Koutný M. et al. Xanthan and gellan degradation by bacteria of activated sludge. Water Sci Technol 2009; 60:965-73. https://doi.org/10.2166/WST.2009.443.
133. Pérez Castro S., Borton M. A., Regan K., Hrabe de Angelis I., Wrighton K. C., Teske A. P. et al. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J 2021; 15:3480-97. https://doi.org/10.1038/S41396-021-01026-5.
134. Gulrez S. K. H., Al-Assaf S., Fang Y., Phillips G. O., Gunning A. P. Revisiting the conformation of xanthan and the effect of industrially relevant treatments. Carbohydr Polym 2012;.90:1235-43. https://doi.org/10.1016/J.CARBPOL.2012.06.055.
135. Liu W., Zhang L., Li M., Wang Q., Gu J., Chen X. et al. Diluted aqueous ionic liquid assists the acidic oxidative hydrolysis of water-soluble recalcitrant polysaccharide xanthan through structural deterioration. Green Chem 2023; 25:5679-91. https://doi.org/10.1039/D3GC01487H.
136. Li Y. J., Ha Y. M., Wang F., Le Y. F. Effect of irradiation on the molecular weight, structure and apparent viscosity of xanthan gum in aqueous solution. Adv. Mater. Res. – Vol. 239-242, Trans Tech Publications Ltd; 2011, p. 2632-7. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2632.
137. Li Y., Xiang D., Wang B., Gong X. Oil-in-Water Emulsions Stabilized by Ultrasonic Degraded Polysaccharide Complex. Mol – 2019. – Vol 24. – Page 1097. 2019; 24:1097. https://doi.org/10.3390/MOLECULES24061097.
138. Khalid N., Zahoor T., Pasha I., Shahid M. Rheological characterization and microstructural depiction of xanthan gum and its hydrolysates. Pakistan J Agric Sci 2020; 57:561-71. https://doi.org/10.21162/PAKJAS/20.9148.
139. Riaz T., Iqbal M. W., Jiang B., Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 2021; 186:472-89. https://doi.org/10.1016/J.IJBIOMAC.2021.06.196.
140. Yang F., Yang L., Guo X., Wang X., Li L., Liu Z. et al. Production and purification of a novel xanthan lyase from a xanthan-degrading microbacterium sp. Strain XT11. Sci World J 2014;2014. https://doi.org/10.1155/2014/368434.
141. Jensen P. F., Kadziola A., Comamala G., Segura D. R., Anderson L., Poulsen J. C. N. et al. Structure and Dynamics of a Promiscuous Xanthan Lyase from Paenibacillus nanensis and the Design of Variants with Increased Stability and Activity. Cell Chem Biol 2019; 26:191-202.e6. https://doi.org/10.1016/J.CHEMBIOL.2018.10.016.
142. Battistel E., Bianchi D., Fornaroli M., Cobianco S. Enzymes breakers for viscosity enhancing polymers. J Pet Sci Eng 2011; 77:10-7. https://doi.org/10.1016/J.PETROL.2011.02.003.
143. Srivastava A., Mandal P., Kumar R. Solid state thermal degradation behaviour of graft copolymers of carboxymethyl cellulose with vinyl monomers. Int J Biol Macromol 2016; 87:357-65. https://doi.org/10.1016/J.IJBIOMAC.2016.03.004.
144. Lakshmi D. S., Trivedi N., Reddy C. R. K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr Polym 2017; 157:1604-10. https://doi.org/10.1016/J.CARBPOL.2016.11.042.
145. Rasheed H. A., Adeleke A., Nzerem P., Yahya A. M., Ajayi O., Ikubanni P. A review on the use of carboxymethyl cellulose in oil and gas field operations. Springer / H. A. Rasheed, A. Adeleke, P. Nzerem, O. Ajayi, P. Ikubanni, A. M. Yahya. Cellulose, 2023–Springer 2023;30:9899-924. https://doi.org/10.1007/s10570-023-05504-1.
146. Jha P. K., Mahto V., Saxena V. K. Effects of Carboxymethyl Cellulose and Tragacanth Gum on the Properties of Emulsion-Based Drilling Fluids. Can J Chem Eng 2015; 93:1577-87. https://doi.org/10.1002/cjce.22259.
147. Scheffer G., Berdugo-Clavijo C., Sen A., Gieg L. M. Enzyme biotechnology development for treating polymers in hydraulic fracturing operations. Microb Biotechnol 2021; 14:953-66. https://doi.org/10.1111/1751-7915.13727.
148. Michaelis J. U., Kiese S., Amann T., Folland C., Asam T., Eisner P. Thickening Properties of Carboxymethyl Cellulose in Aqueous Lubrication. Lubricants 2023; 11:112. https://doi.org/10.3390/lubricants11030112.
149. Erdal N. B., Hakkarainen M. Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules 2022; 23:2713-29. https://doi.org/10.1021/acs.biomac.2c00336.
150. Froidurot A., Microbes V. J. -G. 2022 undefined. Cellulolytic bacteria in the large intestine of mammals. Taylor Fr Froidurot, V. Julliand. Gut Microbes, 2022. Taylor Fr 2022;14. https://doi.org/10.1080/19490976.2022.2031694.
151. Liu L., Huang W. C., Liu Y., Li M. Diversity of cellulolytic microorganisms and microbial cellulases. Int Biodeterior Biodegrad 2021; 163. https://doi.org/10.1016/J.IBIOD.2021.105277.
152. Merklein K., Fong S. S., Deng Y. Biomass Utilization. Biotechnol Biofuel Prod Optim 2016:291-324. https://doi.org/10.1016/B978-0-444-63475-7.00011-X.
153. Nguyen T. A. D., Pyo Kim J., Sun Kim M., Kwan Oh. Y., Sim S. J. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation // International Journal of Hydrogen Energy. 2008; 33:1483-8. https://doi.org/10.1016/J.IJHYDENE.2007.09.033.
154. Pan C. M., Fan Y. T., Zhao P., Hou H. W. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp 3 // International Journal of Hydrogen Energy. 2008; 33:5383-91. https://doi.org/10.1016/J.IJHYDENE.2008.05.037.
155. Lo Y. C., Su Y. C., Chen C. Y., Chen W. M., Lee K. S., Chang J. S. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Bioresour Technol 2009; 100:5802-7. https://doi.org/10.1016/J.BIORTECH.2009.06.066.
156. Kumar N., Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 2000; 35:589-93. https://doi.org/10.1016/S0032-9592(99)00109-0.
157. Zhang J. N., Li Y. H., Zheng H. Q., Fan Y. T., Hou H. W. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 2015; 192:60-7. https://doi.org/10.1016/J.BIORTECH.2015.05.034.
158. Ren N., Wang A., Gao L., Xin L., Lee D. J., Su A. Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures // International Journal of Hydrogen Energy. 2008; 33:5250-5. https://doi.org/10.1016/J.IJHYDENE.2008.05.020.
159. Zhang L., Li Y., Liu X., Ren N., Ding J. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Adv 2019; 9:11179-85. https://doi.org/10.1039/C9RA01158G.
160. Lo Y. C., Bai M. Der, Chen W. M., Chang J. S. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol 2008; 99:8299-303. https://doi.org/10.1016/J.BIORTECH.2008.03.004.
161. Sheng T., Gao L., Zhao L., Liu W., Wang A. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Adv 2015; 5:99781-8. https://doi.org/10.1039/C5RA20000H.
162. Tsegaye B., Balomajumder C. Microbiology PR-I, 2019 U. Isolation and Characterization of Novel Lignolytic, Cellulolytic, and Hemicellulolytic Bacteria from Wood-Feeding Termite Cryptotermes brevis. Int Microbiol 2019; 22:29-39. https://doi.org/10.1007/s10123-018-0024-z.
163. Li H., Xu X., Zhang M., Zhang Y., Zhao Y., Jiang X. et al. Accelerated degradation of cellulose in silkworm excrement by the interaction of housefly larvae and cellulose-degrading bacteria. J Environ Manage 2022;323. https://doi.org/10.1016/J.JENVMAN.2022.116295.
164. Strang O., Ács N., Wirth R., Maróti G., Bagi Z., Rákhely G. et al. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover. Anaerobe 2017; 46:104-13. https://doi.org/10.1016/J.ANAEROBE.2017.05.014.
165. Zhang G., Dong Y. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Front Microbiol 2022;13. https://doi.org/10.3389/fmicb.2022.957444.
166. Saripan A. F., Reungsang A. Simultaneous saccharification and fermentation of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung // International Journal of Hydrogen Energy. 2014; 39:9028-35. https://doi.org/10.1016/J.IJHYDENE.2014.04.066.
167. Chang J. J., Lin J. J., Ho C. Y., Chin W. C., Huang C. C. Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource // International Journal of Hydrogen Energy. 2010; 35:13399-406. https://doi.org/10.1016/J.IJHYDENE.2009.11.119.
168. Tondro H., Zilouei H., Zargoosh K., Bazarganipour M. Investigation of heterogeneous sulfonated graphene oxide to hydrolyze cellulose and produce dark fermentative biohydrogen using Enterobacter aerogenes. Bioresour Technol 2020;306. https://doi.org/10.1016/J.BIORTECH.2020.123124.
169. Hou F., Fan L., Ma X., Wang D., Wang W., Ding T. et al. Degradation of carboxymethylcellulose using ultrasound and β-glucanase: Pathways, kinetics and hydrolysates’ properties. Carbohydr Polym 2018; 201:514-21. https://doi.org/10.1016/J.CARBPOL.2018.07.092.
170. Scheffer G., Rachel N. M., Ng K. K. S., Sen A., Gieg L. M. Preparation and identification of carboxymethyl cellulose-degrading enzyme candidates for oilfield applications. J Biotechnol 2022; 347:18-25. https://doi.org/10.1016/J.JBIOTEC.2022.02.001.
171. Vendruscolo F. Starch: a potential substrate for biohydrogen production. Int J Energy Res 2015; 39:293-302. https://doi.org/10.1002/er.3224.
172. Sjöö M., Nilsson L. Starch in Food: Structure, Function and Applications. Starch Food Struct Funct Appl 2017:1-893. https://doi.org/10.1016/C2015-0-01896-2.
173. Rodriguez-Garcia M. E., Hernandez-Landaverde M. A., Delgado J. M., Ramirez-Gutierrez C. F., Ramirez-Cardona M., Millan-Malo B. M. et al. Crystalline structures of the main components of starch. Curr Opin Food Sci 2021; 37:107-11. https://doi.org/10.1016/J.COFS.2020.10.002.
174. Huang H., Deng Y. fan, Zeng Q., Heynderickx P. M., Chen G., Wu D. Integrating electrochemical pretreatment (EPT) and side-stream sulfidogenesis with conventional activated sludge process: Performance, microbial community and sludge reduction mechanisms. Chem Eng J 2022;433:133678. https://doi.org/10.1016/J.CEJ.2021.133678.
175. Kim J. R., Thelusmond J. R., Albright V. C., Chai Y. Exploring structure-activity relationships for polymer biodegradability by microorganisms. Sci Total Environ 2023;890. https://doi.org/10.1016/J.SCITOTENV.2023.164338.
176. Ai Y., Jane J. Gelatinization and rheological properties of starch. Starch-Stärke. 2015; 67:213-24.
177. Rezler R., Poliszko S. Temperature dependence of starch gel rheological properties. Food Hydrocoll 2010; 24:570-7. https://doi.org/10.1016/J.FOODHYD.2010.02.003.
178. Sun H., Zhao P., Ge X., Xia Y., Hao Z., Liu J. et al. Recent advances in microbial raw starch degrading enzymes. Springer / H. Sun, P. Zhao, X. Ge, Y. Xia, Z. Hao, J. Liu, M. Peng. Applied Biochem Biotechnol 2010. Springer. 2010; 160:988-1003. https://doi.org/10.1007/s12010-009-8579-y.
179. Jayasinghearachchi H. S., Sarma P. M., Lal B. Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well // International Journal of Hydrogen Energy. 2012; 37:5569-78. https://doi.org/10.1016/J.IJHYDENE.2011.12.145.
180. Jayasinghearachchi H. S., Singh S., Sarma P. M., Aginihotri A., Lal B. Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline // International Journal of Hydrogen Energy. 2010; 35:6665-73. https://doi.org/10.1016/J.IJHYDENE.2010.04.034.
181. Balachandar G., Varanasi J. L., Singh V., Singh H., Das D. Biological hydrogen production via dark fermentation: A holistic approach from lab-scale to pilot-scale // International Journal of Hydrogen Energy. 2020; 45:5202-15. https://doi.org/10.1016/J.IJHYDENE.2019.09.006.
182. Singh V., Singh H., Das D. Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923 // International Journal of Hydrogen Energy. 2019; 44:26905-19. https://doi.org/10.1016/J.IJHYDENE.2019.08.125.
183. Yin Y., Wang J. Isolation and characterization of a novel strain Clostridium butyricum INET1 for fermentative hydrogen production // International Journal of Hydrogen Energy. 2017; 42:12173-80. https://doi.org/10.1016/J.IJHYDENE.2017.02.083.
184. Singh N., Rai P., Pandey A., Pandey A. Exploring the potential of Bacillus licheniformis AP1 for fermentive biohydrogen production using starch substrate: BBD based process parameter optimization // Fuel. 2022;319. https://doi.org/10.1016/J.FUEL.2022.123668.
185. Pradhan N., d’Ippolito G., Dipasquale L., Esposito G., Panico A., Lens P. N. L. et al. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch. Bioresour Technol 2021;332. https://doi.org/10.1016/J.BIORTECH.2021.125127.
186. Kanai T., Imanaka H., Nakajima A., Uwamori K., Omori Y., Fukui T. et al. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 2005; 116:271-82. https://doi.org/10.1016/J.JBIOTEC.2004.11.002.
187. Lo Y. C., Chen S. Der, Chen C. Y., Huang T. I., Lin C. Y., Chang J. S. Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: A feasibility study // International Journal of Hydrogen Energy. 2008; 33:5224-33. https://doi.org/10.1016/J.IJHYDENE.2008.05.014.
188. Zhang L., Ban Q., Li J., Wang T. Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater. Chemosphere 2022;300. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134503.
189. Sen B., Suttar R. R. Mesophilic fermentative hydrogen production from sago starch-processing waste-water using enriched mixed cultures // International Journal of Hydrogen Energy. 2012; 37:15588-97. https://doi.org/10.1016/J.IJHYDENE.2012.04.027.
190. Pason P., Tachaapaikoon C., Panichnumsin P., Ketbot P., Waeonukul R., Kosugi A. et al. One-step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community. Biocatal Agric Biotechnol 2020;27. https://doi.org/10.1016/J.BCAB.2020.101658.
191. Hasyim R., Imai T., O-Thong S., Sulistyowati L. Biohydrogen production from sago starch in waste-water using an enriched thermophilic mixed culture from hot spring // International Journal of Hydrogen Energy. 2011; 36:14162-71. https://doi.org/10.1016/J.IJHYDENE.2011.04.211.
192. O-Thong S., Hniman A., Prasertsan P., Imai T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures // International Journal of Hydrogen Energy. 2011; 36:3409-16. https://doi.org/10.1016/J.IJHYDENE.2010.12.053.
193. Xie L., Dong N., Wang L., Zhou Q. Thermophilic hydrogen production from starch wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic effluent recycling // International Journal of Hydrogen Energy. 2014; 39:20942-9. https://doi.org/10.1016/J.IJHYDENE.2014.10.049.
194. Fasheun D. O., da Silva A. S. A., Teixeira R. S. S., Ferreira-Leitão V. S. Dark fermentative hydrogen production from cassava starch: A comprehensive evaluation of the effects of starch extrusion and enzymatic hydrolysis // International Journal of Hydrogen Energy. 2024; 52:322-34. https://doi.org/10.1016/J.IJHYDENE.2023.05.312.
195. Sinbuathong N., Sillapacharoenkul B. Dark fermentation of starch factory wastewater with acid- and base-treated mixed microorganisms for biohydrogen production // International Journal of Hydrogen Energy. 2021; 46:16622-30. https://doi.org/10.1016/J.IJHYDENE.2020.06.109.
196. Yunus N., Jahim J. M., Anuar N., Siti S. R., Kofli N. T. Batch fermentative hydrogen production utilising sago (Metroxylon sp.) starch processing effluent by enriched sago sludge consortia // International Journal of Hydrogen Energy. 2014; 39:19937-46. https://doi.org/10.1016/J.IJHYDENE.2014.10.015.
Review
For citations:
Ivanenko A.A., Laikova A.A., Zhuravleva E.A., Shekhurdina S.V., Parshina S.N., Potokina V.V., Kovalev A.A., Kovalev D.A., Rybkin I.A., Orlov M.V., Alahmari M., Litti Yu.V. Unlocking biodegradation of major components of produced fluids. Alternative Energy and Ecology (ISJAEE). 2025;(4):91-125. (In Russ.) https://doi.org/10.15518/isjaee.2025.04.091-125