

Method for binding tritium-containing water in concrete for industrial facilities
https://doi.org/10.15518/isjaee.2025.04.082-090
Abstract
The article examines an innovative method for immobilizing tritium-containing water in concrete, designed as an alternative to conventional disposal approaches. Using the Fukushima-1 NPP accident as a case study, the authors present the COREBRICK technology (developed by EXORB), which combines ion-selective sorption and conditioning of contaminated water for subsequent use in construction materials. Calculations of the concrete solution’s specific activity were performed based on TEPCO data, complemented by Monte Carlo simulations to verify compliance with international radiation safety standards. The findings demonstrate that the proposed method ensures effective tritium containment and is suitable for producing structural materials in the construction of storage facilities and other nuclear infrastructure.
About the Authors
O. L. TashlykovRussian Federation
Oleg L. Tashlykov - Professor of «Nuclear Power Plants and Renewables» Department, Doct. Sci (Engineering).
620002, Yekaterinburg, Mira st., 19
Scopus ID 36992762900, Researcher ID AAM-4935-2021
D. O. Kaskov
Russian Federation
Dmitry O. Kaskov - postgraduate student.
620002, Yekaterinburg, Mira st., 19
T. P. Volozheninov
Russian Federation
Timofey P. Volozheninov - postgraduate student.
620002, Yekaterinburg, Mira st., 19
References
1. Novikov G. A. Ensuring safety in the field of atomic energy use: textbook / G. A. Novikov, O. L. Tashlykov, S. E. Shcheklein; under general. red. G. A. Novikova. – Yekaterinburg: Urals. Un-ta, 2017. – 552 p.
2. Nosov Yu. V. Features of decommissioning fast reactors BN-350, -600 / Yu. V. Nosov [et al.] // Nuclear energy. – 2018. – Vol. 125. – No. 4. – Pp. 195-199.
3. Tashlykov O. L. On the problem of reducing the dose costs of NPP personnel / O. L. Tashlykov, S. E. Shcheklein, V. I. Bulatov // Izvestiya vuzov. Nuclear power engineering. – 2011. – No. 1. – Pp. 55-60.
4. Samoilov A. A. Priority areas for optimizing radioactive waste management / A. A. Samoilov, S. V. Strizhova, P. A. Blokhin // Plenary and sectional reports of the XI International Scientific and Technical Conference Safety, Efficiency and Economics of nuclear energy. Moscow: Rosenergoatom Concern JSC, 2018. – Pp. 269-275.
5. On criteria for classifying solid, liquid and gaseous wastes as radioactive waste: Decree of the Government of the Russian Federation No. 1069 dated 19.10.2012. URL: https://base.garant.ru/70247038/ (Date of reference: 04/05/2023).
6. Metallidi M. M. Variants of technologies for the isolation and treatment of tritium in the processing of spent nuclear fuel // Materials of the seminar: Treatment of tritium-containing radioactive waste.
7. International Atomic Energy Agency (IAEA). The Fukushima Daiichi Accident. Report by the Director General and five technical volumes. Vienna: International Atomic Energy Agency, 2015
8. Anzai K., Ban N., Ozawa T. & Tokonami S. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures // Journal of Clinical Biochemistry and Nutrition. 2011;50(1):2-8. https://doi.org/10.3164/jcbn.D-11-00021.
9. Chen H., Xu K. Reflections on international dispute settlement mechanisms related to the discharge of contaminated water at the Fukushima nuclear power plant // Ocean and Coastal Area Management. – 2022. – Vol. 226. – P. 106278.
10. Update of information on decommissioning of the Fukushima Daiichi nuclear power plant in 2021. – URL: https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/02_meti_sideevent.pdf (Date of reference: 05.04.2023).
11. Pat. 2706019 RF, IPC G21F 9/04. Method of processing liquid radioactive waste / V. P. Remez; application 21.09.2018; published 13.11.2019.
12. Remez V. P. Improving the efficiency of localization of radionuclides cobalt-60 and cesium-137 from liquid radioactive waste // Nuclear Physics and Engineering. – 2016. – Vol. 7. – No. 2. – Pp. 129-137.
13. Бюсселер К. О. Открытие шлюзов на АЭС «Фукусима» // Наука. – 2020. – Т. 369. – № 6504. – С. 621-622.
14. Lai J. -L., Li Z. -G., Wang Y., Xi H. -L. & Luo X.-G. Tritium and carbon-14 contamination reshaping the microbial community structure, metabolic network, and element cycle in the seawater environment // Environmental Science & Technology. 2023:57(13);5305-5316. https://doi.org/10.1021/acs.est.3c00422.
15. Cui F., Wang T., Chen Q., Sun L., Chen N., Wan J., Li S., Zhang Q., Zhang M., Yan H., Liu L. & Tu Y. Molecular mechanism of toxic effects of tritium water in different biological media // ACS Chemical Health & Safety. 2023:30(5);251-259. https://doi.org/10.1021/acs.chas.3c00037.
16. ICRP Publication 119: Compendium of Dose Coefficients based on ICRP Publication 60 // Annals of the ICRP. – 2012. – Vol. 41 (Suppl.). – Pр. 1-130.
17. TEPCO. Оценки концентрации радиации для зон резервуаров (на 31.03.2020). – URL: https://www4.tepco.co.jp/en/sp/decommission/progress/water-treatment/images/tankarea_en.pdf (дата обращения: 05.04.2023).
18. Stakhiv M. R. Processing and conditioning of radioactive waste at nuclear power plants to prepare for final isolation / M. R. Stakhiv [et al.]. Moscow: VNIIAES, 2013. URL: https://www.atomic-energy.ru/technology/40756 (Date of reference: 04/05/2023).
19. Bulatov V. I. Construction of a liquid radioactive waste processing complex at the Beloyarsk NPP // Alternative Energy and Ecology (ISJAEE). – 2020. – № 25-27 (347-349). – Pp. 62-72.
20. 20]. Arustamov A. E. Method of ion-selective purification of liquid radioactive waste // Safety of vital activity. – 2005. – No. 11. – Pp. 13-16.
21. Tashlykov O. L. Ion-selective treatment as a method for increasing the efficiency of liquid radioactive waste reducing // AIP Conference Proceedings. – 2021. – Vol. 2388. – P. 020032.
22. IAEA Radiation Protection Manual No. SSG-46. Vienna: IAEA, 2018.
23. Tashlykov O. L., Mahmud K. A., Litovchenko V. Yu., Vasyutin N. A., Volozheninov T. P., Kaskov D. O., Yuzbashieva K. Sh. Optimization of radiation protection of containers for cured liquid radioactive waste // Alternative Energy and Ecology (ISJAEE). – 2023. – № 2 (407). – Pp. 54-63.
24. Tashlykov O. L., Litovchenko V. Yu., Vasyutin N. A., Khandaker M. U., Mahmud K. A. Improving the design of protective containers for radioactive waste // Radiation physics and Chemistry. – 2022. – Vol. 199. – P. 110229.
25. Al-Ghamdi Hanan, Tashlykov O. L., Sayyed M. I., Almuqrin Aljawhara A. H., Khandaker Mayeen Uddin, Mahmoud K. A. Suggested two layers container for shielding the low and intermediate activity gamma-ray sources // Radiation Physics and Chemistry. 2022;199:110322. https://doi.org/10.1016/j.radphy-schem.2022.110322.
26. GOST 26633-2015. Concrete is heavy and fine-grained. Technical specifications. Moscow: Standartinform, 2016.
27. 27. The IAEA. Regulatory control of radiation exposure due to the presence of radionuclides in building materials. Safety Report Series No. 95. Vienna: IAEA, 2020.
28. SanPiN 2.6.1.1281-03. Sanitary rules on radiation safety during transportation of radioactive materials, Moscow, 2003.
29. Numata S. et al. Diffusion of tritium water in cement materials // Journal of Nuclear Materials, 1990, vol. 171, No. 1-2, pp. 373-380.
30. Takata H. and others. Profiles of concentrations of tritium penetrated into concrete // Thermonuclear science and technology. – 2008. – Vol. 54. – No. 1. – Pp. 223-226.
Review
For citations:
Tashlykov O.L., Kaskov D.O., Volozheninov T.P. Method for binding tritium-containing water in concrete for industrial facilities. Alternative Energy and Ecology (ISJAEE). 2025;(4):82-90. (In Russ.) https://doi.org/10.15518/isjaee.2025.04.082-090