Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Интеграция технологий утилизации органических отходов АПК: производство кормовых добавок, снижение эмиссии углекислого газа и получение водорода для устойчивого сельского хозяйства

https://doi.org/10.15518/isjaee.2025.05.012-042

Аннотация

В настоящее время остро стоит проблема роста цен на энергоносители, усугубляемая параллельным увеличением потребления и, как следствие, увеличением объемов отходов. Антропогенное воздействие на окружающую среду обусловлено не только истощением природных ресурсов, но и, в значительной степени, аккумуляцией значительных объемов органических отходов (ОО) сельскохозяйственного и перерабатывающего секторов. В рамках стратегии снижения негативного влияния, основанной на принципах «зеленой химии», рассматривается ряд технологических решений, включающих культивирование личинок мухи черной львинки (Hermetia illucens), микроводорослей, а также анаэробное сбраживание ОО. Целью данного исследования является оценка перспектив интеграции вышеупомянутых технологий для утилизации ОО с минимальной эмиссией углекислого газа и оптимизацией затрат на процессы утилизации, производства кормовых добавок и биоводорода. В фокусе исследования находится разработка концепции интеграции рассматриваемых технологий утилизации, а также формирование материальных и энергетических балансов комплекса интегрированных технологий. Предлагаемая концепция интеграции позволяет эффективно преобразовывать отходы в ценные энергоносители и продукты, такие как удобрения и кормовые добавки. Разработанный комплекс интегрированных технологий потенциально способен полностью компенсировать собственные энергетические потребности за счет утилизации производимого биогаза в когенерационной установке. Однако, данное заключение требует верификации посредством проведения дополнительных комплексных испытаний с учетом качественно-количественных характеристик ОО и локальных климатических условий. Перспективы использования получаемого водорода в сельском хозяйстве охватывают несколько направлений, включая обработку семян растений, применение в качестве гормонального регулятора для снижения стрессовых факторов при культивировании, стимуляцию корнеобразования, антиоксидантную защиту и продление сроков хранения. Кроме того, рассматривается возможность применения водорода в двигателях внутреннего сгорания для повышения степени сжатия и снижения выбросов отработанных газов.

Об авторах

А. В. Сафонов
Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ»
Россия

Сафонов Александр Владимирович, инженер лаборатории биоэнергетических технологий

Researcher ID: AAE-1039-2022

109428, Москва, 1-й Институтский проезд, 5



Д. А. Ковалев
Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ»
Россия

Ковалев Дмитрий Александрович, заведующий лабораторией биоэнергетических технологий, кандидат технических наук

Researcher ID: K-4810-2015

109428, Москва, 1-й Институтский проезд, 5



А. С. Дорохов
Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ»
Россия

Дорохов Алексей Семенович, первый заместитель директора, главный научный сотрудник, доктор технических наук, академик РАН

Researcher ID: V-6460-2017

109428, Москва, 1-й Институтский проезд, 5



Д. Ю. Павкин
Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ»
Россия

Павкин Дмитрий Юрьевич, руководитель научного направления, старший научный сотрудник, кандидат технических наук

Researcher ID: N-6655-2018

109428, Москва, 1-й Институтский проезд, 5



М. Ю. Карелина
Федеральное государственное бюджетное образовательное учреждение высшего образования «Государственный университет управления»
Россия

Карелина Мария Юрьевна, проректор, доктор технических наук, профессор

Researcher ID: E-1309-2019

Scopus Author ID: 56513943600

109542, г. Москва, Рязанский проспект, д. 99



В. В. Филатов
Федеральное государственное бюджетное образовательное учреждение высшего образования «Государственный университет управления»
Россия

Филатов Владимир Викторович, ведущий научный сотрудник Лаборатории реверсивного инжиниринга, кандидат технических наук, доцент

Researcher ID: CAF-6945-2022

Scopus Author ID: 57218165485

109542, г. Москва, Рязанский проспект, д. 99



А. А. Ковалев
Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ»
Россия

Ковалев Андрей Александрович, главный научный сотрудник лаборатории биоэнергетических технологий, доктор технических наук

Researcher ID: F-7045-2017

Scopus Author ID: 57205285134

109428, Москва, 1-й Институтский проезд, 5

+79263477955



Список литературы

1. Izmaylov A. Y., Lobachevskiy Y. P., Fedotov A. V., Grigoryev V. S., Tsench Y. S. Adsorption-Oxidation Technology of Wastewater Recycling in Agroindustrial Complex Enterprises // Mordovia University Bulletin. 2018; 28 (2):207-221. https://doi.org/10.15507/0236-2910.028.201802.207-221.

2. Artamonov A. V., Izmailov A. Y., Kozhevnikov Y. A., Kostyakova Y. Y., Lobachevsky Y. P., Pashkin S. V., Marchenko O. S. Effective Purification of Concentrated Organic Wastewater from Agro-Industrial Enterprises, Problems and Methods of Solution. AMA, Agricultural Mechanization in Asia, Africa and Latin America. 2018; 49:49-53.

3. J. V. Karaeva. Hydrogen production at centralized utilization of agricultural waste // International Journal of Hydrogen Energy. – 2021. https://doi.org/10.1016/j.ijhydene.2021.08.004.

4. Kovalev A. A., Kovalev D. A., Nozhevnikova A. N., Zhuravleva E. A., Katraeva I. V., Grigoriev V. S., Litti Yu. V. Effect of Low Digestate Recirculation Ratio on Biofuel and Bioenergy Recovery in a Two-Stage Anaerobic Digestion Process // International Journal of Hydrogen Energy. 2021; 46(80):39688-39699. https://doi.org/10.1016/j.ijhydene.2021.09.239.

5. Waste G., Outlook M. Beyond an Age of Waste Turning Rubbish into a Resource Executive Summary. – 2024.

6. Abu Hatab A., Cavinato M. E. R., Lindemer A., Lagerkvist C. -J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries: A Systematic Review of the Literature // Cities. 2019; 94:129-142. https://doi.org/10.1016/j.cities.2019.06.001.

7. United Nations Environment Programme 2021. Food Waste Index Report 2021. Nairobi.

8. Sinha S., Tripathi P. Trends and Challenges in Valorisation of Food Waste in Developing Economies: A Case Study of India // Case Studies in Chemical and Environmental Engineering. 2021; 4:100162. https://doi.org/10.1016/j.cscee.2021.100162.

9. Filimonau V., Ermolaev V. A. A Sleeping Giant? Food Waste in the Foodservice Sector of Russia // Journal of Cleaner Production. 2021; 2.

10. Agapkin A., Makhotina I., Ibragimova N., Goryunova O., Izembayeva A., Kalachev S. The Problem of Agricultural Waste and Ways to Solve It. IOP Conference Series: Earth and Environmental Science. 2022; 981:22009. https://doi.org/10.1088/1755-1315/981/2/022009.

11. Ministry of agriculture of the Russian Federation. Guidelines in technological design of systems of manure removal and preparation for use; In Russian; Moscow; 2021. (in Russ.)).

12. Awasthi M. K., Chen H., Awasthi S. K., Duan Y., Liu T., Pandey A., Varjani S., Zhang Z. Application of Metagenomic Analysis for Detection of the Reduction in the Antibiotic Resistance Genes (ARGs) by the Addition of Clay during Poultry Manure Composting. Chemosphere. 2019; 220:137-145. https://doi.org/10.1016/j.chemosphere.2018.12.103.

13. Das S., Goswami L., Bhattacharya S. S. Chapter 3 - Vermicomposting: Earthworms as Potent Bioresources for Biomass Conversion; Kataki R., Pandey A., Khanal S. K., Pant D. B. T. -C. D. in B. and B., Eds. // Elsevier. – 2020, pp. 79-102. https://doi.org/10.1016/B978-0-444-64309-4.00003-9.

14. Ddiba D., Andersson K., Rosemarin A., Schulte-Herbrüggen H., Dickin S. The Circular Economy Potential of Urban Organic Waste Streams in Low- and Middle-Income Countries // Environment, Development and Sustainability. 2022; 24:1-29. https://doi.org/10.1007/s10668-021-01487-w.

15. Kumar V., Bansal V., Madhavan A., Kumar M., Sindhu R., Awasthi M., Binod P., Saran S. Active Pharmaceutical Ingredient (API) Chemicals: A Critical Review of Current Biotechnological Approaches // Bioengineered. 2022; 13. https://doi.org/10.1080/21655979.2022.2031412.

16. Liu T., Klammsteiner T., Dregulo A. M., Kumar V., Zhou Y., Zhang Z., Awasthi M. K. Black Soldier Fly Larvae for Organic Manure Recycling and Its Potential for a Circular Bioeconomy: A Review // Science of The Total Environment. 2022; 833:155122. https://doi.org/10.1016/j.scitotenv.2022.155122.)

17. Rizvi S. M. A., Kamal K., Ratlamwala T. A. H. Mathematical Modelling of a Sustainable Energy System for Restaurant Communities: Waste-to-H2 Conversion, CO2 Sequestration, Clean Fuel Production, and Power Generation // Computers & Chemical Engineering. 2025; 199:109038. https://doi.org/10.1016/j.compchemeng.2025.109038.

18. Tripathi S., Choudhary S., Meena A., Poluri K. M. Carbon Capture, Storage, and Usage with Microalgae: A Review // Environmental Chemistry Letters. 2023; 21(4):2085-2128. https://doi.org/10.1007/s10311-023-01609-y.

19. Wang R., Wang X., Zhu T. Research Progress and Application of Carbon Sequestration in Industrial Flue Gas by Microalgae: A Review // Journal of Environmental Sciences. 2025; 152:14-28. https://doi.org/10.1016/j.jes.2024.04.018.

20. Karsten A. S. J., van der Bank M. The role of carbon emissions taxes and carbon greenhouse gas emissions on the renewable energy output: evidence from south Africa // International Journal of Economics and Finance Studies. 2022; 8055:156-174. https://doi.org/10.34109/ijefs.20220029.

21. Karimi M., Shirzad M., Silva J. A. C., Rodrigues A. E. Carbon Dioxide Separation and Capture by Adsorption: A Review // Environmental Chemistry Letters. 2023; 21(4):2041-2084. https://doi.org/10.1007/s10311-023-01589-z.

22. Yadav G., Dubey B. K., Sen R. A Comparative Life Cycle Assessment of Microalgae Production by CO2 Sequestration from Flue Gas in Outdoor Raceway Ponds under Batch and Semi-Continuous Regime // Journal of Cleaner Production. 2020; 258:120703. https://doi.org/10.1016/j.jclepro.2020.120703.

23. Barati B., Zeng K., Baeyens J., Wang S., Addy M., Gan S. -Y., El-Fatah Abomohra A. Recent Progress in Genetically Modified Microalgae for Enhanced Carbon Dioxide Sequestration // Biomass and Bioenergy. 2021; 145:105927. https://doi.org/10.1016/j.biombioe.2020.105927.

24. McCoy S. T., Rubin E. S. An Engineering-Economic Model of Pipeline Transport of CO2 with Application to Carbon Capture and Storage // International Journal of Greenhouse Gas Control. 2008; 2(2):219-229. https://doi.org/10.1016/S1750-5836(07)00119-3.

25. Eldesouki M. H., Rashed A. E., El-Moneim A. A. A Comprehensive Overview of Carbon Dioxide, Including Emission Sources, Capture Technologies, and the Conversion into Value-Added Products // Clean Technologies and Environmental Policy. 2023; 25(10): 3131- 3148. https://doi.org/10.1007/s10098-023-02599-9.

26. Nguyen L. N., Vu M. T., Vu H. P., Johir M. A. H., Labeeuw L., Ralph P. J., Mahlia T. M. I., Pandey A., Sirohi R., Nghiem L. D. Microalgae-Based Carbon Capture and Utilization: A Critical Review on Current System Developments and Biomass Utilization // Critical Reviews in Environmental Science and Technology. 2023; 53(2):216-238. https://doi.org/10.1080/10643389.2022.2047141.

27. Zhu B., Chen G., Cao X., Wei D. Molecular Characterization of CO2 Sequestration and Assimilation in Microalgae and Its Biotechnological Applications // Bioresource Technology. 2017; 244:1207-1215. https://doi.org/10.1016/j.biortech.2017.05.199.

28. Adamu Ugya Y., Chen H., Sheng Y., Ajibade F. O., Wang Q. A Review of Microalgae Biofilm as an Eco-Friendly Approach to Bioplastics, Promoting Environmental Sustainability // Environmental Research. 2023; 236:116833. https://doi.org/10.1016/j.envres.2023.116833.

29. Tarafdar A., Sowmya G., Yogeshwari K., Rattu G., Negi T., Awasthi M. K., Hoang A., Sindhu R., Sirohi R. Environmental Pollution Mitigation through Utilization of Carbon Dioxide by Microalgae // Environmental Pollution. 2023; 328:121623. https://doi.org/10.1016/j.envpol.2023.121623.

30. Molazadeh M., Ahmadzadeh H., Pourianfar H. R., Lyon S., Rampelotto P. H. The Use of Microalgae for Coupling Wastewater Treatment with CO2 Biofixation // Frontiers in Bioengineering and Biotechnology. – 2019. – Volume 7. https://doi.org/10.3389/fbioe.2019.00042.

31. Prasad R., Gupta S. K., Shabnam N., Oliveira C. Y. B., Nema A. K., Ansari F. A., Bux F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability. 2021. https://doi.org/10.3390/su132313061.

32. Min Z., Wang K., Wang H., Fu W., Wu B. Advances in Carbon Sequestration Technology Using Marine Microalgae // Marine Biology Research. 2024; 20(9- 10):401-417. https://doi.org/10.1080/17451000.2024.2371317.

33. Li G., Li T., Fu W., Lei C., Hu S. Chapter 4 - Sym004 Anti-EGFR Antibody Mixture Overcomes Resistance to Anti-EGFR Antibodies in Metastatic Colorectal Cancer. In Breaking Tolerance to Antibody-Mediated Immunotherapy / Hu S. B. T. -N. S. A. for T. A. -E. A., Ed. // Academic Press. 2023; 35-40. https://doi.org/10.1016/B978-0-12-821584-5.00026-2.

34. Adetunji A. I., Gumbi S. T., Erasmus M. Harnessing the Potential of Microalgae in Sequestration of CO2 Emissions: Removal Mechanisms, Optimization Strategies, and Bioenergy Production // Journal of Hazardous Materials Advances. 2025; 18:100722. https://doi.org/10.1016/j.hazadv.2025.100722.

35. Gebremikael M. T., Ranasinghe A., Hosseini P. S., Laboan B., Sonneveld E., Pipan M., Oni F. E., Montemurro F., Höfte M., Sleutel S., De Neve S. How Do Novel and Conventional Agri-Food Wastes, Co-Products and by-Products Improve Soil Functions and Soil Quality? // Waste Management. 2020; 113:132-144. https://doi.org/10.1016/j.wasman.2020.05.040.

36. Laursen S. F., Flint C. A., Bahrndorff S., Tomberlin J. K., Kristensen T. N. Reproductive Output and Other Adult Life-History Traits of Black Soldier Flies Grown on Different Organic Waste and by-Products // Waste Management. 2024; 181:136-144. https://doi.org/10.1016/j.wasman.2024.04.010.

37. Dortmans B. M. A., Egger J., Diener S., Zurbrügg C. Black Soldier Fly Biowaste Processing – A Step- by-Step Guide, 2nd Ed.; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland, 2021.

38. Caruso D., Devic E., Subamia I. W., Baras P., Etienne T. Technical Handbook of Domestication and Production of Diptera Black Soldier Fly (BSF) Hermetia Illucens, Stratiomyidae; Percetakan IPB, 2013.

39. Setti L., Francia E., Pulvirenti A., Gigliano S., Zaccardelli M., Pane C., Caradonia F., Bortolini S., Maistrello L., Ronga D. Use of Black Soldier Fly (Hermetia Illucens (L.), Diptera: Stratiomyidae) Larvae Processing Residue in Peat-Based Growing Media // Waste Management. 2019; 95:278-288. https://doi.org/10.1016/j.wasman.2019.06.017.

40. Surendra K. C., Tomberlin J. K., van Huis A., Cammack J. A., Heckmann L. -H. L., Khanal S. K. Rethinking Organic Wastes Bioconversion: Evaluating the Potential of the Black Soldier Fly (Hermetia Illucens (L.)) (Diptera: Stratiomyidae) (BSF) // Waste Management. 2020; 117:58-80. https://doi.org/10.1016/j.wasman.2020.07.050.

41. Parodi A., Gerrits W. J. J., Van Loon J. J. A., De Boer I. J. M., Aarnink A. J. A., Van Zanten H. H. E. Black Soldier Fly Reared on Pig Manure: Bioconversion Efficiencies, Nutrients in the Residual Material, Greenhouse Gas and Ammonia Emissions // Waste Management. 2021; 126:674-683. https://doi.org/10.1016/j.wasman.2021.04.001.

42. Guo H., Jiang C., Zhang Z., Lu W., Wang H. Material Flow Analysis and Life Cycle Assessment of Food Waste Bioconversion by Black Soldier Fly Larvae (Hermetia Illucens L.) // Science of The Total Environment. 2021; 750:141656. https://doi.org/10.1016/j.scitotenv.2020.141656.

43. Dzepe D., Magatsing O., Kuietche H. M., Meutchieye F., Nana P., Tchuinkam T., Djouaka R. Recycling Organic Wastes Using Black Soldier Fly and House Fly Larvae as Broiler Feed // Circular Economy and Sustainability. 2021; 1(3):895-906. https://doi.org/10.1007/s43615-021-00038-9.

44. Chia S. Y., Tanga C. M., Khamis F. M., Mohamed S. A., Salifu D., Sevgan S., Fiaboe K. K. M., Niassy S., van Loon J. J. A., Dicke M., Ekesi S. Threshold Temperatures and Thermal Requirements of Black Soldier Fly Hermetia Illucens: Implications for Mass Production // PLOS ONE. 2018; 13(11):e0206097.

45. Salam M., Shahzadi A., Zheng H., Alam F., Nabi G., Dezhi S., Ullah W., Ammara S., Ali N., Bilal M. Effect of Different Environmental Conditions on the Growth and Development of Black Soldier Fly Larvae and Its Utilization in Solid Waste Management and Pollution Mitigation // Environmental Technology & Innovation. 2022; 28:102649. https://doi.org/10.1016/j.eti.2022.102649.

46. Singh A., Kumari K. An Inclusive Approach for Organic Waste Treatment and Valorisation Using Black Soldier Fly Larvae: A Review // Journal of Environmental Management. 2019; 251:109569. https://doi.org/10.1016/j.jenvman.2019.109569.

47. Liu T., Awasthi S. K., Qin S., Liu H., Awasthi M. K., Zhou Y., Jiao M., Pandey A., Varjani S., Zhang Z. Conversion Food Waste and Sawdust into Compost Employing Black Soldier Fly Larvae (Diptera: Stratiomyidae) under the Optimized Condition // Chemosphere. 2021; 272:129931. https://doi.org/10.1016/j.chemosphere.2021.129931.

48. Mulianda R., Harahap R., Laconi E., Ridla M., Jayanegara A. Nutritional Evaluation of Total Mixed Ration Silages Containing Maggot (Hermetia Illucens) as Ruminant Feeds // Journal of Animal Health and Production. 2020; 8:138-144. https://doi.org/10.17582/journal.jahp/2020/8.3.138.144.

49. Nekrasov R. V., Ivanov G. A., Chabaev M. G., Zelenchenkova A. A., Bogolyubova N. V., Nikanova D. A., Sermyagin A. A., Bibikov S. O., Shapovalov S. O. Effect of Black Soldier Fly (Hermetia Illucens L.) Fat on Health and Productivity Performance of Dairy Cows // Animals. 2022. https://doi.org/10.3390/ani12162118.

50. Zhao J., Kawasaki K., Miyawaki H., Hirayasu H., Izumo A., Iwase S., Kasai K. Egg Quality and Laying Performance of Julia Laying Hens Fed with Black Soldier Fly (Hermetia Illucens) Larvae Meal as a Long-Term Substitute for Fish Meal // Poultry Science. 2022; 101(8):101986. https://doi.org/10.1016/j.psj.2022.101986.

51. Khan S., Shi X., Cai R., Zhao S., Li X., Khan I. M., Yin Z., Lu H., Hilal M. G., Yi R., Wu Y., Guo J. Assessing the Performance, Egg Quality, Serum Analysis, Heavy Metals and Essential Trace Metals Accumulation in Laying Hen Eggs and Tissues Fed Black Soldier Fly (Hermetia Illucens) Larvae Meal // Poultry Science. 2024; 103(12):104315. https://doi.org/10.1016/j.psj.2024.104315.

52. Xia J., Ge C., Yao H. Antimicrobial Peptides from Black Soldier Fly (Hermetia Illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming // Animals. 2021. https://doi.org/10.3390/ani11071937.

53. Zhang J., Shi Z., Gao Z., Wen Y., Wang W., Liu W., Wang X., Zhu F. Identification of Three Metallothioneins in the Black Soldier Fly and Their Functions in Cd Accumulation and Detoxification // Environmental Pollution. 2021; 286:117146. https://doi.org/10.1016/j.envpol.2021.117146.

54. Lin C., Xia X., Li Y., Ma R., Zhu L., Li X., Tang Y., Wang C. Heavy Metals Transport Patterns and Risk Evaluation in the Pig Manure - Black Soldier Fly-Tilapia Food Chain // Environmental Pollution. 2023; 337:122565. https://doi.org/10.1016/j.envpol.2023.122565.

55. Heuel M., Kreuzer M., Gangnat I. D. M., Frossard E., Zurbrügg C., Egger J., Dortmans B., Gold M., Mathys A., Jaster-Keller J., Weigel S., Sandrock C., Terranova M. Low Transfer of Cadmium, Lead and Aflatoxin B1 to Eggs and Meat of Laying Hens Receiving Diets with Black Soldier Fly Larvae Reared on Contaminated Substrates // Animal Feed Science and Technology. 2023; 304:115733. https://doi.org/10.1016/j.anifeedsci.2023.115733.

56. Tiew K. -G. Sustainable Chromium Ore Processing Residue (COPR) Waste Treatment with Black Soldier Fly Larvae (BSFL) // Journal of Hazardous Materials Letters. 2024; 5:100126. https://doi.org/10.1016/j.hazl.2024.100126.

57. Camenzuli L., Dam R., Rijk T., Andriessen R., Schelt J., Van der Fels-Klerx H. J. (Ine). Tolerance and Excretion of the Mycotoxins Aflatoxin B1, Zearalenone, Deoxynivalenol, and Ochratoxin A by Alphitobius Diaperinus and Hermetia Illucens from Contaminated Substrates // Toxins. 2018; 10:91. https://doi.org/10.3390/toxins10020091.

58. Van Dongen K. C. W., de Lange E., van Asseldonk L. L. M., Zoet L., van der Fels-Klerx H. J. Safety and Transfer of Veterinary Drugs from Substrate to Black Soldier Fly Larvae // Animal. 2024; 18(7):101214. https://doi.org/10.1016/j.animal.2024.101214.

59. Brulé L., Misery B., Baudouin G., Yan X., Guidou C., Trespeuch C., Foltyn C., Anthoine V., Moriceau N., Federighi M., Boué G. Evaluation of the Microbial Quality of Hermetia Illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates // Foods. 2024. https://doi.org/10.3390/foods13101587.

60. Santoso I., Fadhilah Q. G., Maryanto A. E., Yuniati R., Putri A. S., Tamrela H., Sugiyanto A., Sigar I. M. Stenotrophomonas Maltophilia G17: Potential Antifungal Agent Isolated from the Gut of Black Soldier Fly Larvae against Ganoderma Boninense // Kuwait Journal of Science. 2025; 52(1):100309. https://doi.org/10.1016/j.kjs.2024.100309.

61. Benestad S. L., Tran L., Malzahn A. M., Liland N. S., Belghit I., Hagemann A. Retention of Prions in the Polychaete Hediste Diversicolor and Black Soldier Fly, Hermetia Illucens, Larvae after Short-Term Experimental Immersion and Feeding with Brain Homogenate from Scrapie Infected Sheep // Heliyon. 2024; 10(15):e34848. https://doi.org/10.1016/j.heliyon.2024.e34848.

62. De Smet J., Vandeweyer D., Van Moll L., Lachi D., Van Campenhout L. Dynamics of Salmonella Inoculated during Rearing of Black Soldier Fly Larvae (Hermetia Illucens) // Food Research International. 2021; 149:110692. https://doi.org/10.1016/j.foodres.2021.110692.

63. Laganaro M., Bahrndorff S., Eriksen N. T. Growth and Metabolic Performance of Black Soldier Fly Larvae Grown on Low and High-Quality Substrates // Waste Management. 2021; 121:198-205. https://doi.org/10.1016/j.wasman.2020.12.009.

64. Lindberg L., Ermolaev E., Vinnerås B., Lalander C. Process Efficiency and Greenhouse Gas Emissions in Black Soldier Fly Larvae Composting of Fruit and Vegetable Waste with and without Pre-Treatment // Journal of Cleaner Production. 2022; 338:130552. https://doi.org/10.1016/j.jclepro.2022.130552.

65. Boakye-Yiadom K. A., Ilari A., Duca D. Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly (Hermetia Illucens L.). Sustainability. 2022. https://doi.org/10.3390/su141610456.

66. Nozhevnikova A. N., Russkova Y. I., Litti Y. V., Parshina S. N., Zhuravleva E. A., Nikitina A. A. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities // Microbiology. 2020; 89(2):129- 147. https://doi.org/10.1134/S0026261720020101.

67. O-Thong S., Mamimin C., Kongjan P., Reungsang A. Chapter Six – Two-Stage Fermentation Process for Bioenergy and Biochemicals Production from Industrial and Agricultural Wastewater / Li Y., Khanal S. K., Eds.; Advances in Bioenergy // Elsevier. – 2020. – Vol. 5, pp. 249-308. https://doi.org/10.1016/bs.aibe.2020.04.007.

68. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Loiko N. G., Litti Y. V. Feasibility of Successive Hydrogen and Methane Production in a Single-Reactor Configuration of Batch Anaerobic Digestion through Bioaugmentation and Stimulation of Hydrogenase Activity and Direct Interspecies Electron Transfer // International Journal of Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2022.12.231.

69. Kovalev A. A., Kovalev D. A., Litti Y. V., Katraeva I. V., Grigoriev V. S. Chapter 7 – Optimization of the Organic Waste Anaerobic Digestion in Biogas Plants through the Use of a Vortex Layer Apparatus / Vasant P., Thomas J., Munapo E., Weber G. -W. B. T. -A. of A. I. in a G. E. E., Eds. // Academic Press. 2022; 129-150. https://doi.org/10.1016/B978-0-323-89785-3.00016-5.

70. Kovalev A. A., Kovalev D. A., Grigoriev V. S., Makarov A. Chapter 1 – Application of Some Ways to Intensify the Process of Anaerobic Bioconversion of Organic Matter / Vasant P., Thomas J., Munapo E., Weber G. -W. B. T. -A. of A. I. in a G. E. E., Eds. // Academic Press. 2022; 1-33. https://doi.org/10.1016/B978-0-323-89785-3.00002-5.

71. Kovalev A., Kovalev D., Panchenko V., Kharchenko V., Vasant P. Way for Intensifying the Process of Anaerobic Bioconversion by Preliminary Hydrolysis and Increasing Solid Retention Time. In Intelligent Computing and Optimization / Vasant P., Zelinka I., Weber G. -W., Eds. // Springer International Publishing: Cham. 2021; 1195-1203.

72. Kovalev A. A., Kovalev D. A., Litti Yu. V., Katraeva I. V., Nozhevnikova A. N. Energy Rationale for the Use of the Thermophilic Mode of Anaerobic Bioconversion of Liquid Organic Waste in the Climatic Conditions of the Russian Federation // KnE Life Sciences. 2022;7 (1 SE-Articles). https://doi.org/10.18502/kls.v7i1.10139.

73. Gunter L. I., Goldfarb L. L. (1991) Digesters (Metantenki). Moscow: Stroyizdat (in Russ.)

74. Malcheva, B. Z.; Petrov, P. G.; Stefanova, V. V. Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant // Processes. 2022. https://doi.org/10.3390/pr10020406.

75. Miles S., Sun W., Field J., Pepper I. Survival of Infectious Prions During Anaerobic Digestion of Municipal Sewage Sludge and Lime Stabilization of Class B Biosolids // Journal of residuals science and technology. 2013; 10:69-75.

76. Khan M. A., Ngo H. H., Guo W., Liu Y., Zhang X., Guo J., Chang S. W., Nguyen D. D., Wang J. Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy // Renewable Energy. 2018; 129:754-768. https://doi.org/10.1016/j.renene.2017.04.029.

77. Kovalev D., Kovalev A., Litti Yu., Nozhevnikova A., Katraeva I. The Effect of the Load on Organic Matter on Methanogenesis in the Continuous Рrocess of Bioconversion of Anaerobic Bioreactor Substrates Pretreated in the Vortex Layer Apparatus // Ecology and Industry of Russia. 2019; 23(12):9-13. (In Russ.). https://doi.org/10.18412/1816-0395-2019-12-9-13.

78. Shekhurdina S., Zhuravleva E., Kovalev A., Andreev E., Kryukov E., Loiko N., Laikova A., Popova N., Kovalev D., Vivekanand V., Litti Yu. Comparative Effect of Conductive and Dielectric Materials on Methanogenesis from Highly Concentrated Volatile Fatty Acids // Bioresource Technology. 2023; 377:128966. https://doi.org/10.1016/j.biortech.2023.128966.

79. Zhuravleva E., Kovalev A., Kovalev D., Kotova I., Shekhurdina S., Laikova A., Krasnovsky A., Pygamov T., Vivekanand V., Li L., He C., Litti Yu. Does Carbon Cloth Really Improve Thermophilic Anaerobic Digestion Performance on a Larger Scale? Focusing on Statistical Analysis and Microbial Community Dynamics // Journal of Environmental Management. 2023; 341:118124. https://doi.org/10.1016/j.jenvman.2023.118124.

80. Abdrashitov A., Gavrilov A., Marfin E., Panchenko V., Kovalev A., Bolshev V., Karaeva J. Cavitation Reactor for Pretreatment of Liquid Agricultural Waste // Agriculture. 2023; 13(6). https://doi.org/10.3390/agriculture13061218.

81. Kovalev A. A., Kovalev D. A., Karaeva J. V., Vivekanand V., Pareek N., Masakapalli S. K., Osmonov O. M., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Innovative Organic Waste Pretreatment Approach for Efficient Anaerobic Bioconversion: Effect of Recirculation Ratio at Pre-Processing in Vortex Layer Apparatus on Biogas Production // International Journal of Hydrogen Energy. 2024; 53:208-217. https://doi.org/10.1016/j.ijhydene.2023.12.044.

82. Laikova A. A., Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Shekhurdina S. V., Litti Yu. V. The Feasibility of Single-Stage Biohythane Production in a Semi-Continuous Thermophilic Bioreactor: Influence of Operating Parameters on the Process Kinetics and Microbial Community Dynamics // International Journal of Hydrogen Energy. 2024; 55:1486-1494. https://doi.org/10.1016/j.ijhydene.2023.12.140.

83. Kovalev A. A., Kovalev D. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Litti Yu. V. Pretreatment of Anaerobic Fermentation Feedstock in a Vortex Layer Apparatus: Effect of the Working Chamber Ferromagnetic Core on Biogas Production // International Journal of Hydrogen Energy. 2024; 57:764-768. https://doi.org/10.1016/j.ijhydene.2024.01.053.

84. Sahil S., Singh R., Masakapalli S. K., Pareek N., Kovalev A. A., Litti Yu. V., Nanda S., Vivekanand V. Biomass Pretreatment, Bioprocessing and Reactor Design for Biohydrogen Production: A Review // Environmental Chemistry Letters. 2024. https://doi.org/10.1007/s10311-024-01722-6.

85. Zhuravleva E. A., Shekhurdina S. V., Laikova A., Kotova I. B., Loiko N. G., Popova N. M., Kriukov E., Kovalev A. A., Kovalev D. A., Katraeva I. V., Vivekanand V., Awasthi M. K., Litti Yu. V. Enhanced Thermophilic High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Waste with Spatial Separation from Conductive Materials in a Single Reactor Volume. 2024. https://doi.org/10.1016/j.jenvman.2024.121434.

86. Laikova A., Zhuravleva E., Shekhurdina S., Ivanenko A., Biryuchkova P., Loiko N., Kryukov E., Kovalev A., Kovalev D., He C., Litti Yu. The Intracellular Accumulation of Iron Coincides with Enhanced Biohydrogen Production by Thermoanaerobacterium Thermosaccharolyticum // Chemical Engineering Journal. 2024; 497:154961. https://doi.org/10.1016/j.cej.2024.154961.

87. Mikheeva Е. R., Katraeva I. V., Kovalev A. A., Shekhurdina S. V., Zhuravleva E. A., Laikova A. A., Kovalev D. A., Litti Yu. V. Optimization of Two-Stage Thermophilic Anaerobic Digestion of Dairy Wastewater: Effect of Carrier Material on Process Performance and Microbial Community // International Journal of Hydrogen Energy. 2024; 88:1108-1122. https://doi.org/10.1016/j.ijhydene.2024.09.213.

88. Ivanenko A. A., Laikova A. A., Zhuravleva E. A., Shekhurdina S. V., Loiko N. G., Kotova I. B., Kovalev A. A., Kovalev D. A., Panchenko V. A., Mamedov S. E., Litti Yu. V. Effect of Indirect Electrochemical Pretreatment on the Anaerobic Digestion of Swine Manure // International Journal of Hydrogen Energy. 2024; 95:278-289. https://doi.org/10.1016/j.ijhydene.2024.11.184.

89. Kovalev D. A., Izmailov A. Y., Dorokhov A. S., Makarov A. G., Safonov A. V., Litti Yu. V., Kovalev A. A. Two-Stage Anaerobic Digestion of Organic Agricultural Waste: Efficiency Evaluation of Using Carbon Cloth as a Carrier Material for Anaerobic Biofilters during the Start-Up // International Journal of Hydrogen Energy. 2025; 120:13-23. https://doi.org/10.1016/j.ijhydene.2025.03.256.

90. Kovalev А. A., Kovalev D. A., Panchenko V. A., Vivekanand V., Pareek N., Masakapalli S. K., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Ivanenko A. A., Litti Yu. V. The Effect of Different Feeding Intervals of Substrate Pretreated in a Vortex Layer Apparatus on Dark Fermentative Biohydrogen Production // International Journal of Hydrogen Energy. 2025; 146:149975. https://doi.org/10.1016/j.ijhydene.2025.06.165.

91. Kovalev A. A., Kovalev D. A., Panchenko V. A., Vivekanand V., Zhuravleva E. A., Litti Yu. V. Bioelectrochemical System for Green Energy Production in a Circular Bioeconomy: Conversion of Solar Energy and Organic Waste into Hydrogen Carrier Gases // International Journal of Hydrogen Energy. 2025; 152:150206. https://doi.org/10.1016/j.ijhydene.2025.150206.

92. Negro V., Noussan M., Chiaramonti D. Alternative Options for Biogas-to-Energy: A Comparison of Electricity and Biomethane Generation Based on the Real Operation of a Production Site // Applied Energy. 2025; 377:124687. https://doi.org/10.1016/j.apenergy.2024.124687.

93. Li Z., Zhang L., Chauhdary S. T., Agrawal M. K., Muhammad T., Dai J. Eco-Friendly Energy Generation Model of a Tri-Generation System Using Renewable Biogas Fuel, Brayton Cycle, and Rankine Cycles for Sustainable Electricity, Heating, and Cooling Production // Energy. 2025; 330:136893. https://doi.org/10.1016/j.energy.2025.136893.

94. Kovalev A., Kovalev D., Panchenko V., Kharchenko V., Vasant P. System of Optimization of the Combustion Process of Biogas for the Biogas Plant Heat Supply. 2020; 1072. https://doi.org/10.1007/978-3-030-33585-4_36.

95. Karaeva J. V., Timofeeva S. S., Savina M. V., Sungatullin K. I., Kovalev A. A., Kovalev D. A., Panchenko V. A., Litti Yu. V. Generating Energy from Hydrogen-Enriched Biogas at Low-Power Mini-Thermal Power Plants // International Journal of Hydrogen Energy. 2024; 93:513-519. https://doi.org/10.1016/j.ijhydene.2024.10.396.

96. Dutta S., Kataki S., Banerjee I., Pohrmen C. B., Jaiswal K. K., Jaiswal A. K. Microalgal Biorefineries in Sustainable Biofuel Production and Other High-Value Products // New Biotechnology. 2025; 87:39-59. https://doi.org/10.1016/j.nbt.2025.02.007.

97. Abreu A. P., Martins R., Nunes J. Emerging Applications of Chlorella Sp. and Spirulina (Arthrospira) Sp. Bioengineering. 2023. https://doi.org/10.3390/bioengineering10080955.

98. Bora A., Thondi Rajan A. S., Ponnuchamy K., Muthusamy G., Alagarsamy A. Microalgae to Bioenergy Production: Recent Advances, Influencing Parameters, Utilization of Wastewater – A Critical Review // Science of The Total Environment. 2024; 946:174230. https://doi.org/10.1016/j.scitotenv.2024.174230.

99. Abdur Razzak S., Bahar K., Islam K. M. O., Haniffa A. K., Faruque M. O., Hossain S. M. Z., Hossain M. M. Microalgae Cultivation in Photobioreactors: Sustainable Solutions for a Greener Future // Green Chemical Engineering. 2024; 5(4):418-439. https://doi.org/10.1016/j.gce.2023.10.004.

100. Sharma A. K., Jaryal S., Sharma S., Dhyani A., Tewari B. S., Mahato N. Biofuels from Microalgae: A Review on Microalgae Cultivation, Biodiesel Production Techniques and Storage Stability. Processes. 2025. https://doi.org/10.3390/pr13020488.

101. Manu L., Mokolensang J. F., Ben Gunawan W., Setyawardani A., Salindeho N., Syahputra R. A., Iqhrammullah M., Nurkolis F. Photobioreactors Are Beneficial for Mass Cultivation of Microalgae in Terms of Areal Efficiency, Climate Implications, and Metabolites Content // Journal of Agriculture and Food Research. 2024; 18:101282. https://doi.org/10.1016/j.jafr.2024.101282.

102. Chen W., Liu J., Chu G., Wang Q., Zhang Y., Gao C., Gao M. Comparative Evaluation of Four Chlorella Species Treating Mariculture Wastewater under Different Photoperiods: Nitrogen Removal Performance, Enzyme Activity, and Antioxidant Response // Bioresource Technology. 2023; 386:129511. https://doi.org/10.1016/j.biortech.2023.129511.

103. Lu Q., Liu H., Sun Y., Li H. Combined Zeolite-Based Ammonia Slow-Release and Algae-Yeast Consortia to Treat Piggery Wastewater: Improved Nitrogen and Carbon Migration // Bioresource Technology. 2023; 387:129671. https://doi.org/10.1016/j.biortech.2023.129671.

104. Arend M., Yuan Y., Ruiz-Sola M. Á., Omranian N., Nikoloski Z., Petroutsos D. Widening the Landscape of Transcriptional Regulation of Green Algal Photoprotection // Nature Communications. 2023; 14(1):2687. https://doi.org/10.1038/s41467-023-38183-4.

105. Almomani F., Al Ketife A., Judd S., Shurair M., Bhosale R. R., Znad H., Tawalbeh M. Impact of CO2 Concentration and Ambient Conditions on Microalgal Growth and Nutrient Removal from Wastewater by a Photobioreactor // Science of The Total Environment. 2019; 662:662-671. https://doi.org/10.1016/j.scitotenv.2019.01.144.

106. Cocon K. D., Luis P. The Potential of RuBis-CO in CO2 Capture and Utilization // Progress in Energy and Combustion Science. 2024; 105:101184. https://doi.org/10.1016/j.pecs.2024.101184.

107. Wei X., Yu G., Cao W., Feng M., Xu Y., Jin M., Zhang Y., Li T., Guo L. Biomass Producing and CO2 Capturing Simultaneously by Chlorella Vulgaris: Effect of CO2 Concentration and Aeration Rate // Energy. 2024; 306:132321. https://doi.org/10.1016/j.energy.2024.132321.

108. Craggs R. J., Adey W. H., Jenson K. R., St. John M. S., Green F. B., Oswald W. J. Phosphorus Removal from Wastewater Using an Algal Turf Scrubber // Water Science and Technology. 1996; 33(7):191-198. https://doi.org/10.1016/0273-1223(96)00354-X.

109. Elsayed M., Ran Y., Ai P., Azab M., Mansour A., Jin K., Zhang Y., Abomohra A. E. -F. Innovative Integrated Approach of Biofuel Production from Agricultural Wastes by Anaerobic Digestion and Black Soldier Fly Larvae // Journal of Cleaner Production. 2020; 263:121495. https://doi.org/10.1016/j.jclepro.2020.121495.

110. Bukharina I. L., Didmanidze O. N., Pashkova A. S., Kovalchuk A. G., Larionov M. V., Islamova N. A., Belelya A. S., Zaitseva T. A., Butenko S. A. Biorecycling of Organic Waste as a Universal Ecoclimatic Project and Increasing the Resource Capacity of Cultural and Natural Ecosystems // Journal of Ecohumanism. 2024; 3(8):667-685. https://doi.org/10.62754/joe.v3i8.4759.

111. Burynin D. A., Smirnov A. A., Proshkin Y. A., Kachan S. A. Development of a Control System for Phytoradiation with Feedback Using Plant Feeding with Molecular Hydrogen. Electrical technologies and electrical equipment in agriculture. 2021; 11(126): 51-60. (in. Russ.). https://doi.org/10.24411/2227-9407-2021-11-51-60.

112. Zeng J., Zhang M. Molecular Hydrogen Is Involved in Phytohormone Signaling and Stress Responses in Plants // PloS one. 2013; 8:e71038. https://doi.org/10.1371/journal.pone.0071038.

113. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K., Katayama Y., Asoh S., Ohta S. Hydrogen Acts as a Therapeutic Antioxidant by Selectively Reducing Cytotoxic Oxygen Radicals // Nature medicine. 2007; 13:688-694. https://doi.org/10.1038/nm1577.

114. Hong Y., Chen S., Zhang J. -M. Hydrogen as a Selective Antioxidant: A Review of Clinical and Experimental Studies // The Journal of International Medical Research. 2010; 38:1893-1903. https://doi.org/10.1177/147323001003800602.

115. Ohno K., Ito M., Ichihara M., Ito M. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases // Oxidative Medicine and Cellular Longevity. 2012; 2012(1):353152. https://doi.org/10.1155/2012/353152.

116. Xie Y., Mao Y., Lai D., Zhang W., Shen W. H2 Enhances Arabidopsis Salt Tolerance by Manipulating ZAT10/12-Mediated Antioxidant Defence and Controlling Sodium Exclusion // PLOS ONE. 2012; 7(11):e49800. https://doi.org/10.1371/journal.pone.0049800.

117. Cui W., Gao C., Fang P., Lin G., Shen W. Alleviation of Cadmium Toxicity in Medicago Sativa by Hydrogen-Rich Water // Journal of Hazardous Materials. 2013; 260:715-724. https://doi.org/10.1016/j.jhazmat.2013.06.032.

118. Chen Y., Wang M., Hu L., Liao W., Dawuda M., Li C. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress // Frontiers in Plant Science. 2017; 8. https://doi.org/10.3389/fpls.2017.00128.

119. Chen M., Cui W., Zhu K., Xie Y., Zhang C., Shen W. Hydrogen-Rich Water Alleviates Aluminum-Induced Inhibition of Root Elongation in Alfalfa via Decreasing Nitric Oxide Production // Journal of Hazardous Materials. 2014; 267:40-47. https://doi.org/10.1016/j.jhazmat.2013.12.029.

120. Fang H., Ye F., Yang R., Huang D., Chen X., Wang C., Liao W. Hydrogen Gas: A New Fresh Keeping Agent of Perishable Horticultural Products // Food Chemistry. 2024; 451:139476. https://doi.org/10.1016/j.foodchem.2024.139476.

121. Yun Z., Gao H., Chen X., Chen Z., Zhang Z., Li T., Qu H., Jiang Y. Effects of Hydrogen Water Treatment on Antioxidant System of Litchi Fruit during the Pericarp Browning // Food Chemistry. 2021; 336:127618. https://doi.org/10.1016/j.foodchem.2020.127618.

122. Zerveas S., Kydonakis E., Mente M. -S., Daskalakis V., Kotzabasis K. Hydrogen Gas as a Central On-off Functional Switch of Reversible Metabolic Arrest – New Perspectives for Biotechnological Applications // Journal of Biotechnology. 2021; 335:9-18. https://doi.org/10.1016/j.jbiotec.2021.06.005.

123. An R., Luo S., Zhou H., Zhang Y., Zhang L., Hu H., Li P. Effects of Hydrogen-Rich Water Combined with Vacuum Precooling on the Senescence and Antioxidant Capacity of Pakchoi (Brassica Rapa Subsp. Chinensis) // Scientia Horticulturae. 2021; 289:110469. https://doi.org/10.1016/j.scienta.2021.110469.

124. Zhang H., Wu X., Liu X., Yao Y., Liu Z., Wei L., Hou X., Gao R., Li Y., Wang C., Liao W. Hydrogen Gas Improves the Postharvest Quality of Lanzhou Lily (Lilium Davidii Var. Unicolor) Bulbs // Plants. 2023. https://doi.org/10.3390/plants12040946.

125. Jiang K., Kuang Y., Feng L., Liu Y., Wang S., Du H., Shen W. Molecular Hydrogen Maintains the Storage Quality of Chinese Chive through Improving Antioxidant Capacity // Plants. 2021. https://doi.org/10.3390/plants10061095.

126. Zhang Y., Zhao G., Pengfei C., Yan X., Li Y., Cheng D., Wang R., Chen J., Shen W. Nitrite Accumulation during Storage of Tomato Fruit as Prevented by Hydrogen Gas // International Journal of Food Properties. 2019; 22:1425-1438. https://doi.org/10.1080/10942912.2019.1651737.

127. Hancock J. T., Russell G., Stratakos A. C. Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry // Applied Sciences. 2022. https://doi.org/10.3390/app122010448.

128. Li L., Zeng Y., Cheng X., Shen W. The Applications of Molecular Hydrogen in Horticulture // Horticulturae. 2021. https://doi.org/10.3390/horticulturae7110513.

129. Rashed M. M., Masjuki H. H., Kalam M. A., Alabdulkarem A., Rahman M. M., Imdadul H. K., Rashedul H. K. Study of the Oxidation Stability and Exhaust Emission Analysis of Moringa Olifera Biodiesel in a Multi-Cylinder Diesel Engine with Aromatic Amine Antioxidants // Renewable Energy. 2016; 94:294-303. https://doi.org/10.1016/j.renene.2016.03.043.

130. Velmurugan K., Sathiyagnanam A. P. Impact of Antioxidants on NOx Emissions from a Mango Seed Biodiesel Powered DI Diesel Engine // Alexandria Engineering Journal. 2016; 55(1):715-722. https://doi.org/10.1016/j.aej.2015.10.004.

131. Saravanan S., Krishnamoorthy N. Investigation on Reduction in Consequences of Adding Antioxidants into the Algae Biodiesel Blend as a CI Engine Fuel // Fuel. 2020; 276:117993. https://doi.org/10.1016/j.fuel.2020.117993.

132. Sathiyamoorthi R., Sankaranarayanan G. Effect of Antioxidant Additives on the Performance and Emission Characteristics of a DICI Engine Using Neat Lemongrass Oil-Diesel Blend // Fuel. 2016; 174:89-96. https://doi.org/10.1016/j.fuel.2016.01.076.

133. Sathiyamoorthi R., Sankaranarayanan G. Effect of Antioxidant Additives on the Performance and Emission Characteristics of a DICI Engine Using Neat Lemongrass Oil-Diesel Blend // Fuel. 2016; 174:89-96. https://doi.org/10.1016/j.fuel.2016.01.076.

134. Dueso C., Muñoz M., Moreno F., Arroyo J., Gil-Lalaguna N., Bautista A., Gonzalo A., Sánchez J. L. Performance and Emissions of a Diesel Engine Using Sunflower Biodiesel with a Renewable Antioxidant Additive from Bio-Oil // Fuel. 2018; 234:276-285. https://doi.org/10.1016/j.fuel.2018.07.013.

135. Radhakrishnan Lawrence K., Huang Z., Nguyen X. P., Balasubramanian D., Gangula V. R., Doddipalli R. R., Le V. V., Bharathy S., Hoang A. T. RETRACTED: Exploration over Combined Impacts of Modified Piston Bowl Geometry and Tert-Butyl Hydroquinone Additive-Included Biodiesel/Diesel Blend on Diesel Engine Behaviors // Fuel. 2022; 322:124206. https://doi.org/10.1016/j.fuel.2022.124206.

136. Ashok B., Nanthagopal K., Jeevanantham A. K., Bhowmick P., Malhotra D., Agarwal P. An Assessment of Calophyllum Inophyllum Biodiesel Fuelled Diesel Engine Characteristics Using Novel Antioxidant Additives // Energy Conversion and Management. 2017; 148:935-943. https://doi.org/10.1016/j.enconman.2017.06.049.

137. Palash S. M., Kalam M. A., Masjuki H. H., Arbab M. I., Masum B. M., Sanjid A. Impacts of NOx Reducing Antioxidant Additive on Performance and Emissions of a Multi-Cylinder Diesel Engine Fueled with Jatropha Biodiesel Blends // Energy Conversion and Management. 2014; 77:577-585. https://doi.org/10.1016/j.enconman.2013.10.016.

138. Rizwanul Fattah I. M., Masjuki H. H., Kalam M. A., Mofijur M., Abedin M. J. Effect of Antioxidant on the Performance and Emission Characteristics of a Diesel Engine Fueled with Palm Biodiesel Blends // Energy Conversion and Management. 2014; 79:265-272. https://doi.org/10.1016/j.enconman.2013.12.024.

139. Ramalingam S., Rajendran S., Viswanathan M., Duraisamy V. Chapter 10 – Effect of Antioxidant Additives on Oxides of Nitrogen (NOx) Emission Reduction from Annona Biodiesel Operated Diesel Engine. In Woodhead Publishing Series in Energy / Azad A. K., Rasul M. B. T. -A. B., Eds. // Woodhead Publishing. 2019:247-263. https://doi.org/10.1016/B978-0-08-102791-2.00010-6.

140. Eldin H. Etaiw S., Elkelawy M., Elziny I., Taha M., Veza I., Alm-Eldin Bastawissi H. Effect of Nanocomposite SCP1 Additive to Waste Cooking Oil Biodiesel as Fuel Enhancer on Diesel Engine Performance and Emission Characteristics // Sustainable Energy Technologies and Assessments. 2022; 52:102291. https://doi.org/10.1016/j.seta.2022.102291.

141. Rashedul H. K., Masjuki H. H., Kalam M. A., Teoh Y. H., How H. G., Rizwanul Fattah I. M. Effect of Antioxidant on the Oxidation Stability and Combustion–Performance–Emission Characteristics of a Diesel Engine Fueled with Diesel–Biodiesel Blend // Energy Conversion and Management. 2015; 106:849-858. https://doi.org/10.1016/j.enconman.2015.10.024.

142. Afzal S., Mumtaz M. W., Rashid U., Danish M., Raza M. A., Raza A., Mukhtar H., Al-Resayes S. I. Exhaust Emission Profiling of Fatty Acid Methyl Esters and NOx Control Studies Using Selective Synthetic and Natural Additives // Clean Technologies and Environmental Policy. 2018; 20(3):589-601. https://doi.org/10.1007/s10098-018-1489-3.

143. İleri E., Koçar G. Effects of Antioxidant Additives on Engine Performance and Exhaust Emissions of a Diesel Engine Fueled with Canola Oil Methyl Ester–Diesel Blend // Energy Conversion and Management. 2013; 76:145-154. https://doi.org/10.1016/j.encon-man.2013.07.037.

144. Viswanathan K., Wu W., Taipabu M. I., Chandra-Ambhorn W. Effects of Antioxidant and Ceramic Coating on Performance Enhancement and Emission Reduction of a Diesel Engine Fueled by Annona Oil Biodiesel // Journal of the Taiwan Institute of Chemical Engineers. 2021; 125:243-256. https://doi.org/10.1016/j.jtice.2021.06.041.

145. Gurusamy M., Ponnusamy C. The Influence of Hydrogen Induction on The Characteristics of a CI Engine Fueled with Blend of Camphor Oil and Diesel with Diethyl Ether Additive // International Journal of Hydrogen Energy. 2023; 48(62):24054-24073. https://doi.org/10.1016/j.ijhydene.2023.03.188.

146. Nayak S. K., Mishra P. C., Nanda S., Devarajan Y. Impacts of Organic Antioxidant Additive on the Performance and Emission Characteristics of a Diesel Engine Fuelled with Hydrogen-Biodiesel Blends in Dual-Fuel Mode // International Journal of Hydrogen Energy. 2025; 127:930-944. https://doi.org/10.1016/j.ijhydene.2025.02.026.

147. Nur M. M. A., Mahreni, Murni S. W., Setyoningrum T. M., Hadi F., Widayati T. W., Jaya D., Sulistyawati R. R. E., Puspitaningrum D. A., Dewi R. N., Hadiyanto, Hasanuzzaman M. Innovative Strategies for Utilizing Microalgae as Dual-Purpose Biofertilizers and Phycoremediators in Agroecosystems // Biotechnology Reports. 2025; 45:e00870. https://doi.org/10.1016/j.btre.2024.e00870.

148. Bhatt N. C., Panwar A., Bisht T. S., Tamta S. Coupling of Algal Biofuel Production with Wastewater // The Scientific World Journal. 2014; 2014(1):210504. https://doi.org/10.1155/2014/210504.

149. Goswami R. K., Mehariya S., Obulisamy P. K., Verma P. Advanced Microalgae-Based Renewable Biohydrogen Production Systems: A Review // Bioresource Technology. 2021; 320:124301. https://doi.org/10.1016/j.biortech.2020.124301.

150. Sanz Smachetti M. E., Coronel C. D., Salerno G. L., Curatti L. Sucrose-to-Ethanol Microalgae-Based Platform Using Seawater // Algal Research. 2020; 45:101733. https://doi.org/10.1016/j.algal.2019.101733.

151. Lacroux J., Llamas M., Dauptain K., Avila R., Steyer J. -P., van Lis R., Trably E. Dark Fermentation and Microalgae Cultivation Coupled Systems: Outlook and Challenges // Science of The Total Environment. 2023; 865:161136. https://doi.org/10.1016/j.scito-tenv.2022.161136.

152. Garoma T., Nguyen D. Anaerobic Co-Digestion of Microalgae Scenedesmus Sp. and TWAS for Biomethane Production // Water Environment Research. 2016; 88(1):13-20. https://doi.org/10.2175/106143015X14362865227472.

153. Jankowska E., Zieliński M., Dębowski M., Oleskowicz-Popiel P. Anaerobic Digestion of Microalgae for Biomethane Production. 2019:405-436. https://doi.org/10.1016/B978-0-12-815162-4.00015-X.

154. Kovalev А. A., Kovalev D. A., Panchenko V. A., Zhuravleva E. A., Laikova A. A., Shekhurdina S. V., Ivanenko A. A., Litty Yu. V. Energy Efficiency of Hydrogen Production during Dark Fermentation // International Journal of Hydrogen Energy. 2024; 87:171- 178. https://doi.org/10.1016/j.ijhydene.2024.08.473.

155. Kovalev A. A., Kovalev D. A., Grigoriev V. S., Panchenko V. Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates // International Journal of Energy Optimization and Engineering. 2022; 11(1):1-17. https://doi.org/10.4018/ijeoe.298693.

156. Kovalev A. A. Energy Analysis of the System of Two-Stage Anaerobic Processing of Liquid Organic Waste with Production of Hydrogen- and Methane-Containing Biogases // International Journal of Hydrogen Energy. 2021; 46(63):31995-32002. https://doi.org/10.1016/j.ijhydene.2021.06.187.

157. Kovalev A. A., Kovalev D. A., Grigoriev V. S. Energy Efficiency of Pretreatment of Digester Synthetic Substrate in a Vortex Layer Apparatus // Engineering Technologies and Systems. 2020; 30(1):92-110. https://doi.org/10.15507/2658-4123.030.202001.092-110.

158. De la Vega-Gonzalez T., Rhenals-Julio J. D., Mendoza-Fandiño J. M., Sofán-Germán S. J., Acuña-Izquierdo F. L. Thermodynamic Assessment of the Integration of Biogas-Fueled Internal Combustion Engines and Absorption Refrigeration Systems // Results in Engineering. 2025; 26:105370. https://doi.org/10.1016/j.rineng.2025.105370.


Рецензия

Для цитирования:


Сафонов А.В., Ковалев Д.А., Дорохов А.С., Павкин Д.Ю., Карелина М.Ю., Филатов В.В., Ковалев А.А. Интеграция технологий утилизации органических отходов АПК: производство кормовых добавок, снижение эмиссии углекислого газа и получение водорода для устойчивого сельского хозяйства. Альтернативная энергетика и экология (ISJAEE). 2025;(5):12-42. https://doi.org/10.15518/isjaee.2025.05.012-042

For citation:


Safonov A.V., Kovalev D.A., Dorokhov A.S., Pavkin D.Yu., Karelina M.Yu., Filatov V.V., Kovalev A.A. Integration of technologies for utilization of organic agrowaste: production of feed additives, reduction of carbon dioxide emissions and production of hydrogen for sustainable agriculture dark fermentation effluent. Alternative Energy and Ecology (ISJAEE). 2025;(5):12-42. (In Russ.) https://doi.org/10.15518/isjaee.2025.05.012-042

Просмотров: 16


ISSN 1608-8298 (Print)