Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of electromagnetic fields on the physico-chemical properties of water (review)

https://doi.org/10.15518/isjaee.2025.10.093-125

Abstract

Currently, research is actively continuing on changes in the characteristics and properties of water as a result of exposure to electromagnetic waves. Studying the effects of fields on water has many practical applications in ecology, agriculture, and industry. In most cases, water is a complex heterogeneous system containing various impurities that affect the physical and chemical properties of water, even in very small quantities. The results of various experimental studies (obviously with different water samples) are not always consistent with each other. Based on a review of scientific publications, this paper analyzes the results of research related to the study of the effects of electric, magnetic and electromagnetic fields of various frequencies and strengths on the physico-chemical properties of water: specific heat, permittivity, refractive index, electrical conductivity, surface tension, wetting angle, viscosity, evaporation rate of water, pH, the absorption spectrum. An analysis of the publications showed that there are significant discrepancies in the experimental results for a number of these properties, while the results of experiments on changes in the refractive index, evaporation rate, and absorption spectrum are generally consistent with each other. If water can naturally change its properties due to electromagnetic action, then it can potentially be considered as a sensor (sensor) of radio emissions. To solve the problem of inconsistency of experimental results, recommendations are given for their presentation.

About the Authors

D. V. Kusakin
Ural Technical Institute of Communications and Informatics (branch) of the Siberian State University of Telecommunications and Informatics in Yekaterinburg
Russian Federation

Kusaykin Dmitry Vyacheslavovich, Cand. of Techn. Sci., Associate Professor of the Department of Multichannel Electrical Communications

ResearcherID: H-9574-2017

620109, Yekaterinburg, Repina Street, 15



V. T. Kuanyshev
Ural Technical Institute of Communications and Informatics (branch) of the Siberian State University of Telecommunications and Informatics in Yekaterinburg
Russian Federation

Kuanyshev Valery Taukenovich, Cand. of Phys. -Math. Sci., Head of the Department of Higher Mathematics and Physics

ResearcherID: HLG-6749-20237

620109, Yekaterinburg, Repina Street, 15



N. M. Barbin
Ural Technical Institute of Communications and Informatics (branch) of the Siberian State University of Telecommunications and Informatics in Yekaterinburg; Ural Institute of State Fire Service of EMERCOM of Russia
Russian Federation

Barbin Nikolai Mikhailovich, Doctor of Techn. Scie., Professor of the Department of Higher Mathematics and Physics

620109, Yekaterinburg, Repina Street, 15

620062, Yekaterinburg, Mira Street, 22



References

1. Simonyan G. S., Harutyunyan N. M. The concept of abnormal and specific properties of water // Science and Education today. – 2018. – № 27 (4). – Pр. 13-15 (in Russ.).

2. Gutierrez-Mejia F., Ruiz-Suarez J. C. AC magnetic susceptibility at medium frequencies suggests a paramagnetic behavior of pure water // Journal of Magnetism and Magnetic Materials. 2012; (324)6: 1129-1132.

3. Poulose S., Quirke J. A., Coey M. Influence of Magnetic Field on Water and Aqueous Solutions // Magnetic Microhydrodynamics. 2024; 120: 83-110.

4. Khan V. A., Vlasov V. A., Myshkin V. F., Izhoikin D. A., Rakhimzhanova L. A. Investigation of the influence of electromagnetic fields on the structure and properties of water // KubGAU Scientific Journal. – 2012. – No. 81 (07). – Pр. 115-127 (in Russ.).

5. Lobyshev V. I. Water as a sensor of weak effects of physical and chemical nature // Russian Chemical Journal. – 2007. – No. 51 (1). – Pр. 107-113 (in Russ.).

6. Youkai Wang, Huinan Wei, Zhuangwen Li. Effect of magnetic field on the physical properties of water // Results in Physics. 2018; 8: 262-267.

7. Zhou K. X., Lu G. W., Zhou Q. C., Song J. H., Jiang S. T., Xia H. R. Monte Carlo simulation of liquid water in a magnetic field // J. Appl. Phys. 2000; 88: 1802-1805.

8. Sronsri C., U-yen K., Sittipol W. Analyses of vibrational spectroscopy, thermal property and salt solubility of magnetized water // Journal of Molecular Liquids. 2021; 323:114613.

9. Al-Musawi S. M., Elmnifi M., Abdulrazig O. H.,Abdullah A. R., Jassim L., Majdi H. S., Habeeb L. J. Water heating rate as a function of magnetic field and electrical induction using solar energy // Mathematical Modelling of Engineering Problems. 2024; 11(2):316-324.

10. Mghaiouini R., Abdelhadi M., Hairch Y., Saifaoui D., Salah M., Abderrahmane E., Chahid E. G., Bensemlali M., Belhora F., El Mouden M., Monkade M., Bouari A. The effect of low frequency of electromagnetic field on the freezing and cooling process of water // Materials Today: Proceedings. 2022; 66(1):85-94.

11. Iwasaka M., Onishi S., Owada N. Effects of pulsed magnetic fields on the light scattering property of the freezing process of aqueous solutions // J. Appl. Phys. 2011; 109(7):109-111.

12. Zhou Z. P., Zhao H. H., Zhao H. X., Han J. The effects of alternating magnetic fields on supercooling phenomena of water and physiological saline // Journal of Chemical Engineering of Chinese Universities. 2013; 27(2):205-209.

13. Zhou Z., Zhao H., Han J. Supercooling and crystallization of water under DC magnetic fields // CIESC Journal. 2012; 63(5):1408-1410.

14. Jin S., Sun S., Jiang X., Zhao Y., Wang Y., Deng Y. Effect of static magnetic field on the freezing process of deionized water and 0,9% NaCl solution // J Food Process Preserv. 2020; 44:14663.

15. Yiran Wang, Teng Xu, Gengbin Tan, Hailong Chen, Li Tao. Effects of low-intensity DC magnetic field on the freezing process of aqueous solution and beef // Food Science and Technology. 2021; 42(9):72221.

16. Zhao H., Hu H., Liu S., Han J. Experimental study on freezing of liquids under static magnetic field // Chinese Journal of Chemical Engineering. 2017; 25(9):1288-1293.

17. Aleksandrov V. D., Barannikov A. A., Dobritsa N. V. Effect of magnetic field on the supercooling of water drops // Inorg. Mater. 2000; 36(9):895-898.

18. Otero L., Rodriguez A. C., Sanz P. D. Effects of static magnetic fields on supercooling and freezing kinetics of pure water and 0,9% NaCl solutions // J. Food Eng. 2018; 217:34-42.

19. Nohara K., Tada Y., Takimoto A., Onishi H. Effects of alternating magnetic field on supercooling of water. The Proceedings of Mechanical Engineering Congress Japan. 2012; 12: J024033.

20. Semikhina L. P., Kiselev V. F. The influence of weak magnetic fields on the properties of water and ice // Izv. vuzov. ser. Phys. – 1988. – № 5. – Рp. 12-17 (in Russ.).

21. Niino T., Nakagawa T., Noguchi S., Sato I., Kawai T., Yamashita H., Masamune K., Dohi T., Mihara M. Whole Ovary Cryopreservation Applying Supercooling under Magnetic Field // Mech. Eng. Cryopreserv. Reprod. Tech. 2012; 5:14-20.

22. Woo M. W., Mujumdar A. S. Effects of electric and magnetic field on freezing and possible relevance in freeze drying // Drying Technol. 2010; 28(4):433-443.

23. Sun W., Xu X. B., Zhang H., Xu C. X. Effects of dipole polarization of water molecules on ice formation under an electrostatic field // Cryobiology. 2008; 56:93-99.

24. Fallah-Joshaqani S. Evaluation of the static electric field effects on freezing parameters of some food systems // Int J Refrig. 2019; 99:30-36.

25. Orlowska M., Havet M., Le-Bail A. Controlled ice nucleation under high voltage DC electrostatic field conditions // Food Research International. 2009; 42:879-884.

26. Zhang X. X., Li X. H., Chen M. Role of the electric double layer in the ice nucleation of water droplets under an electric field // Atmospheric Research. 2016; 178:150-154.

27. Ma Y., Zhong L., Gao J., Liu L., Hu H., Yu Q. Manipulating ice crystallization of 0,9 wt% NaCl aqueous solution by alternating current electric field // Appl. Phys. Lett. 2013; 102:183701.

28. Sun W., Xu X., Sun W., Ying L., Xu C. Effect of alternated electric field on the ice formation during freezing process of 0,9%K2MnO4 water. Proceedings of the 8th international conference on properties and applications of dielectric materials. 2006; 2:774-777.

29. Kang T., You Y., Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications // Food Sci Biotechnol. 2020; 29:303-321.

30. Rodriguez A. C., Otero L., Cobos J. A., Sanz P. D. Electromagnetic freezing in a widespread frequency range of alternating magnetic fields // Food Engineering Reviews. 2019; 11(2):93-103.

31. Takahashi K., Fujiwara Y. The Effects of AC electric field on ice nucleation in the super-cooling of a distilled water // IEEJ Transactions on Electrical and Electronic Engineering. 2023; 19(2):23965.

32. Stan C. A., Tang S. K., Bishop K. J. Whitesides GM. Externally applied electric fields up to 1,6× 105 Vm do not affect the homogeneous nucleation of ice in supercooled water // J. Phys. Chem. B. 2011; 115(5):1089-1097.

33. Lowe J. M., Hinrichsen V., Schremb M., Tropea C. Ice nucleation in high alternating electric fields: Effect of electric field strength and frequency // Physical Review E. 2021; 103(1):012801.

34. Shipunov B. P., Zakharova M. V. Change in the volume of water crystallization as a result of exposure to a high-frequency electromagnetic field // Chemistry Series. 2021; 101(1):53-60.

35. Zhang G., Zhang W., Dong H. Magnetic freezing of confined water // J. Chem. Phys. 2010; 133:134703

36. Inaba H., Saitou T., Tozaki K., Hayashi H. Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter // J. Appl. Phys. 2004; 96:6127-6132.

37. Ayrapetyan S. N. Cell aqua medium as a preliminary target for the effect of electromagnetic fields // Bioelectromagnetics: Current Concepts. 2006; 5:31-64.

38. Petersen A., Schneider H., Rau G., Glasmacher B. A new approach for freezing of aqueous solutions under active control of the nucleation temperature // Cryobiology. 2006; 53:248-257.

39. Hindmarsh J. P., Russel A. B., Chen X. D. Fundamentals of the spray drying of foods –microstructure of frozen droplets // Journal of Food Engineering. 2007; 78:136-150.

40. Zaritzky N. Physical-chemical principles in freezing. In book: Handbook of Frozen Food Processing and Packaging, Second Edition. 2011, pp. 3-37.

41. Semikhina L. P. Change in refractive indices of water after magnetic treatment // Colloidal journal. – 1981. – № 43 (2). – Pр. 401-404 (in Russ.).

42. Khaidarov G. Z., Gorbenko I. V. Some issues of physical methods of investigation of reagentless water treatment // Mechanical engineering and energy industry of Kazakhstan. – 1962. – № 5. – P. 21. (in Russ.).

43. Tatarinov B. P., Kariy E. A. Investigation of some issues of water treatment by a magnetic field // Rostov Institute of Railway Transport Engineers. – 1964. – № 48. – P. 38 (in Russ.).

44. Pang X. F., Deng B. The changes of macroscopic features and microscopic structures of water under influence of magnetic field // Physica B: Condensed Matter. 2008; 403:3571-3577.

45. Hosoda H., Mori H., Sogoshi N., Nagasawa A., Nakabayashi S. Refractive indeces of water and aqueous electrolyte solutions under high magnetic fields // The Journal of Physical Chemistry. 2003; 108:1461-1464.

46. Emilia E., Ledda M., Foletti A. Weak-field H3O+ ion cyclotron resonance alters water refractive index // Electromagn Biol Med. 2017; 36(1):55-62.

47. Wexler D., Drusova S., Woisetschlager J., Fuchs E. C. Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field // Physical Chemistry Chemical Physics. 2016; 18:16281-16292.

48. Banachowicz E. M, Danielewicz-Ferchmin I. Static permittivity of water in electric field higher than 108 V m−1 and pressure varying from 0,1 to 600 MPa at room temperature // Physics and Chemistry of Liquids. 2006; 44(1):95-105.

49. Pang Xiao-Feng, Shen Gui-Fa. The changes of physical properties of water arising from the magnetic field and its mechanism // Modern Physics Letters B. 2013; 31(27):1350228

50. Mghaiouini R., Elmelouky A., Reddad E., Mohamade M., Abdeslam E. The influence of the electromagnetic field on the electric properties of water // Mediterranean Journal of Chemistry. 2020; 10:507-515.

51. Shen X. Increased dielectric constant in the water treated by extremely low frequency electromagnetic field and its possible biological implication // J. Physics: Conference Series. 2011; 329(1):012019.

52. Umansky D. I. The influence of a magnetic field on the dielectric constant of industrial water // Journal of Technical Physics. – 1965. – № 2. – Pр. 2245-2248 (in Russ.).

53. Ibrahim H. I. Biophysical properties of magnetized distilled water // Egypt. J. Solids. 2006; 29(2):363-369.

54. Kiselev V. F., Saletsky A. M., Semikhina L. P. On the effect of weak magnetic fields and microwave radiation on some dielectric and optical properties of water and aqueous solutions // Theor. and exp. Chemistry. – 1988. – № 3 (2). – Pр. 330-334 (in Russ.).

55. Semikhina L. P. Determination of magnetic and dielectric properties of bound water using inductive l cells // Scientific application. – 2006. – № 16 (1). –Pр. 47-52 (in Russ.).

56. Bukaty V. I., Nesteryuk P. I., Chernenko P. P. Influence of magnetic fields and electromagnetic radiation on physico-chemical properties of water // Bulletin of Altai Science. – 2010. – № 1 (8). – Pр. 47-53 (in Russ.).

57. Jawad S., Karkush M., Kaliakin V. Alteration of physicochemical properties of tap water passing through different intensities of magnetic field // Journal of the Mechanical Behavior of Materials. – 2023. – № 32 (1). – P. 20220246.

58. Bessonova A. P., Stas I. E. The influence of a high-frequency electromagnetic field on the physico-chemical properties of water and its spectral characteristics // Polzunovsky bulletin. – 2008. – № 3. – Pр. 305-309 (in Russ.).

59. Holysz L., Szczes A., Chibowski E. Effects of a static magnetic field on water and electrolyte solutions // J. Colloid Interface Sci. 2007; 316(2):996-1002.

60. Kumar A., Mandal A., Sudhkar T. Designing of an electromagnet producing gradient MF and its effect on water properties // Advances in Engineering Design. 2021; 149-158.

61. Komova N. N., Kurnitskiy G. A., Sergienko E. A. The influence of external influences on the physical properties of water // Scientific heritage. – 2020. – No. 50 (3). – Рp. 24-38. (in Russ.).

62. Wu T., Brant J. A. Magnetic Field Effects on pH and Electrical Conductivity: Implications for Water and Wastewater Treatment // Environmental Engineering Science. 2020; 37(11):0182.

63. Hakobyan S. N., Hayrapetyan S. N. Investigation of the specific electrical conductivity of water under the influence of a constant magnetic field, electromagnetic field and low-frequency mechanical vibrations // Biophysics. – 2005. – № 50 (2). – Pр. 265-270 (in Russ.).

64. Shishkin G. G., Ageev I. M., Eskin S. M., Rybin Yu. M., Shishkin A. G. Abnormal behavior of electrical conductivity of water under various kinds of weak influences. Tez. dokl. V. International Congress of Weak and Ultra-weak Fields and Radiation in Biology and Medicine (St. Petersburg, 2009). – 155-161 (in Russ.).

65. Sankin G. N., Teslenko V. S. Inertia of changes in the electrical conductivity of water in weak permanent magnetic fields // ZhTF. – 2000. – № 70 (3). – Рp. 64-65 (in Russ.).

66. Szczes A., Chibowski E., Hołysz L., Rafalski P. Effects of static magnetic field on water at kinetic condition // Chem. Eng. Process. 2011; 50(1):124-127.

67. Gonyaev A. V., Baryshev M. G. Investigation of the effect of extremely low frequency EMF on the physico-chemical characteristics of distilled water, aqueous solutions of grape amino acid and gelatin // A young scientist. – 2010. – № 5 (16). – Pр. 126-128 (in Russ.).

68. Suslyaev V. I., Pavlova A. A. Assessment of changes in the structure of water from external influences based on measured dielectric constant spectra in the microwave range // Reports of TUSUR. – 2010. – No. 2 (22). – Рp. 196-199 (in Russ.).

69. Klochkov A. V., Solomko O. B. Activation of the magnetic effect on water during stirring // Bulletin of the BSCA. – 2021. – № 2. – Pр. 154-159 (in Russ.).

70. Blyumenfel’d L. A., Gol’dfeld M. G. The effect of a magnetic field on the electrical conductivity of water and aqueous solutions of electrolytes // J. Struct Chem. 1968; 9:316-320.

71. Ageev I. M., Shishkin G. G. Changes in the conductivity of water when it is heated by various types of heat sources, including biological objects // Biophysics. – 2002. – Vol. 47. – Issue 5. – Pp. 782-786 (in Russ.).

72. Ageev I. M., Shishkin G. G., Eskin S. M. Water-electric sensors for detecting weak physical fields and bio-radiation // Proceedings of the MAI. – 2006. – Vol. 24. (in Russ.).

73. Chirkova V. Yu., Sharlaeva E. A., Stas I. E. Change of cohesive and adhesive characteristics of water as a result of electromagnetic action // Izvestiya vuzov. Appl. chemistry and biotechnology. – 2019. – № 9 (2). – Pр. 222-231 (in Russ.).

74. Fujimura Y., Iino M. Magnetic field increases the surface tension of water // J. of Physics: Conference Series. 2009; 156(1):1-5.

75. Fujimura Y., Iino M. The surface tension of water under high magnetic fields // J. Appl. Phys. 2008; 103(12):124903.

76. Iino M., Fujimura Y. Surface tension of heavy water under high magnetic fields // Appl. Phys. Lett. 2009; 94:1641.

77. Toledo E. L., Ramalho T. C., Magriotis Z. M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models // J. Mol. Struct. 2008; 888(1-3):409-415.

78. Cho Y. I., Lee S. H. Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers // Int. Commun. Heat Mass Transfer. 2005; 32(1-2):1-9.

79. Hasaani A. S., Hadi Z. L., Rasheed K. A. Experimental study of the interaction of magnetic fields with flowing water // International Journal of Basics and Applied Science. 2015; 3(3):1-8.

80. Pang X., Deng B. Investigation of changes in properties of water under the action of a magnetic field // Sci. China Ser. Phys. Mech. and Astron. 2008; 51(11):1621-1632.

81. Otsuka I., Ozeki S. Does Magnetic Treatment of water Change Its Properties? // The Journal of Physical Chemistry B Letters. 2006; 110:1509-1512.

82. Duenas J. A., Weiland C., Nunez M. A., Ruiz-Rodriguez F. J. Effect of low intensity static magnetic field on purified water in stationary condition: Ultraviolet absorbance and contact angle experimental studies // Journal of Applied Physics. 2020; 127:133907.

83. Amiri M. C., Dadkhah A. A. On reduction in the surface tension of water due to magnetic treatment // Colloids and Surfaces A: Physiochem. Eng. Aspects. 2006; 278:252-255.

84. Gonet B. Influence of constant magnetic fields on certain physiochemical properties of water // Bioelectromagnetics. 1985; 6:169-175.

85. Cai R., Yang H., He J., Zhu W. The effects of magnetic fields on water molecular hydrogen bonds // J. Mol. Struct. 2009; 938(1-3):15-19.

86. Lielmezs J., Aleman H., Fish L. Weak transverse magnetic field effect on the viscosity of water // Zeitschrift fur Physikalische Chemie. 1977; 99(1-3):117-130.

87. Ishii K., Yamamoto S., Yamamoto M., Nakayama H. Relative change of viscosity of water under a transverse magnetic field of 10 T is smaller than 10− 4 // Chemistry letters. 2005; 34(6):874-875.

88. Viswat E., Hermans L. F., Beenakker J. J. M. Experiments on the influence of magnetic fields on the viscosity of water and a water-NaCl solution // Phys. Fluids. 1982; 25:1794-1796.

89. Ghauri S. A., Ansari M. S. Increase of water viscosity under the influence of magnetic field // J. Appl. Phys. 2006; 100(6):100-102.

90. Sueda M., Katsuki A., Nonomura M., Kobayashi R., Tanimoto Y. Effects of high magnetic field on water surface phenomena // J. Phys. Chem. C. 2007; 111:14389-14393.

91. Gang N., St-Pierre L. S., Persinger M. A. Water dynamics following treatment by one hour 0,16 Tesla static magnetic fields depend on exposure volume // Water. 2012; 3:122-131.

92. Gonet J., Hirota N., Kitazawa K., Shoda M. Magnetic field enhancement of water vaporization // J. Appl. Phys. 1999; 86:2923-2925.

93. Guo Y. Z., Yin D. C., Cao H. L., Shi J. Y., Zhang C. Y., Liu Y. M., Huang H. H., Liu Y., Wang Y., Guo W. H., Qian A. R. Evaporation rate of water as a function of a magnetic field and field gradient // International journal of molecular sciences. 2012; 13(12):16916-16928.

94. Poulose S., Alvarez-Brana Y., Basabe-Desmonts L., Benito-Lopez F., Coyle D. Magnetic Field Enhancement of Water Evaporation in Confined Spaces // IEEE Magnetics Letters. 2023; 14:3500105.

95. Duenas J. A., Weiland C., Garcia-Selfa I., Ruiz-Rodríguez F. J. Magnetic influence on water evaporation rate: an empirical triadic model // Journal of Magnetism and Magnetic Materials. 2021; 539:168377.

96. Seyfi A., Afzalzadeh R., Hajnorouzi A. Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface // Chemical Engineering and Processing: Process Intensification. 2017; 120:195-200.

97. Wu S., Sun Y., Jia S. Effects of magnetic field on evaporation of distilled water // J. Petrochemical Univ. 2006; 19(1):10-12.

98. Rashid F. L., Hassan N. M., Jafar A. M. Increasing water evaporation rate by magnetic field // Int. Sci. Investig. J. 2013; 2:61-68.

99. Yang Q. W., Wei H., Li Z. Enhancing water evaporation by combining dynamic and static treatment of magnetic field // Desalination Water Treat. 2021; 216:299-305.

100. Deng B., Pang X. Variations of optic properties of water under action of static magnetic field // Chin. Sci. Bull. 2007; 52:3179-3182.

101. Pang X. F., Deng B., Tang B. Influences of magnetic field on macroscopic properties of water // Mod. Phys. Lett. B. 2012; 26(11):50069.

102. Han X., Peng Y., Ma Z. Effect of magnetic field on optical features of water and KCl solutions // Optik-Int J Light Electron Optics. 2016; 127(16):6371-6376.

103. De Ninno A., Castellano A. C. On the effect of weak magnetic field on solutions of glutamic acid: the function of water // Journal of Physics: Conference Series. 2011; 329:012025.

104. Rai S., Singh N. N., Mishra R. N. Magnetic restructuring of water // Med. Biol. Eng. Comput. 1995; 33(4):614-617.

105. Majeed A. D., Salman S. M. A study of the effect of magnetic field on the absorption spectrum of distilled water // Al-Fateh Journal. 2006; 27:8.

106. Iwasaka M., Ueno S. Structure of water molecules under 14 T magnetic field // J. Appl. Phys. 1998; 83:6459-6461.

107. Mghaiouini R., Benzbiria N., Belghiti M. E., Belghiti H. E., Monkade M. Optical properties of water under the action of the electromagnetic field in the infrared spectrum // Materials Today: Proceedings. 2020; 30(4):1046-1051.

108. Pang X., Deng B. Infrared absorption spectra of pure and magnetized water at elevated temperatures // A Letter Journal Exploring the Frontiers of Physics. 2011; 92(6):65001.

109. Joshi K. M., Kamat P. V. Effect of magnetic field on the physical properties of water // J. Ind. Chem. Soc. 1966; 43:620-622.

110. Quickenden T. I., Betts D. M., Cole B., Noble M. Effect of magnetic fields on the pH of water // J. Phys. Chem. 1971; (18):2830-2831.

111. Algarra R. V., Zamora L., Fos G. M., Lopez P. A. Magnetized water: science or fraud? // J. Chem. Educ. 2008; 85(10):1416-1418.

112. Boufa N. Investigation of the effect of magnetic field on some physical properties of water // International Science and Technology Journal. 2021; 26:19.

113. Wu T., Brant J. A. Magnetic field effects on pH and electrical conductivity: Implications for water and wastewater treatment // Environ Eng Sci. 2020; 37(11):717-727.

114. Alkhazan M. K., Saddiq A. N. The effect of magnetic field on the physical, chemical and microbiological properties of the lake water in Saudi Arabia // Journal of Evolutionary Biology Research. 2010; 2(1):7-14.

115. Pasko O. A. Physico-chemical changes in tap water during its treatment in various ways // Water: chemistry and ecology. – 2010. – № 7. – Pр. 40-45 (in Russ.).

116. Amor B. H., Elaoud A., Hozayn M. Does Magnetic Field Change Water pH? // Asian Research Journal of Agriculture. – 2018. – № 8 (1). – Pр. 1-7.

117. Sarimov R. M., Gudkov S. V., Matveeva T. A., Simakin A. V., Baymler I. V., Troitskiy A. V., Mikhailova G. N., Lyakhov G. A., Pustovoy V. I., Shcherbakov I. A. The effect of a permanent magnetic field with induction up to 7 T on aqueous solutions // Physics of aqueous solutions. – 2020. – № 3. – P. 43 (in Russ.).


Review

For citations:


Kusakin D.V., Kuanyshev V.T., Barbin N.M. Effect of electromagnetic fields on the physico-chemical properties of water (review). Alternative Energy and Ecology (ISJAEE). 2025;(10):93-125. (In Russ.) https://doi.org/10.15518/isjaee.2025.10.093-125

Views: 66

JATS XML

ISSN 1608-8298 (Print)