Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

NON-ISOCYANATE POLYURETHANES – YESTERDAY, TODAY AND TOMORROW

https://doi.org/10.15518/isjaee.2016.03-04.009

Abstract

In this article we try to systematize the published results in the field of non-isocyanate polyurethanes (NIPUs). The main attention is paid to substitution of conventional polyurethanes cured at ambient temperatures and practically without VOC. Such materials are used mainly in the mass-production of paints, floorings and foam. Sustainable routes and other new ways of NIPU synthesize are described. Also data of hybrid compositions (HNIPUs) are provided.

About the Authors

O. Figovsky
Hybrid Coating Technologies, Inc. (USA) 950 John Dale Blvd, Daly City, CA 94015, USA
United States

professor, founder, Director R&D of Israeli Research
Centre “Polymate”; Director R&D of Germany
company “EFM GmbH” (Berlin); President of IAI (Israel), member of European Academy of Sciences, Foreign Members of two Russian Academies of Sciences (REA & RAASN), the chairman of the UNESCO chair “Green Chemistry”



A. Leykin
Polymate Ltd.-INRC, Israel South Industrial Area, Migdal haEmek, POB 73, 2310001, Israel
Israel

Senior Researcher, (Polymate Ltd.-INRC)



L. Shapovalov
Polymate Ltd.-INRC, Israel South Industrial Area, Migdal haEmek, POB 73, 2310001, Israel
Israel
D.Sc. (engineering), Leading Researcher of the “Polymate”


References

1. Thomson T. Polyurethanes as specialty chemicals: principles and applications. CRC Press, 2005. 190 p.

2. Meier-Westhues U. Polyurethanes: coatings, adhesives and sealants. Vincentz Network GmbH & Co KG, Hannover, 2007. 344 p.

3. Merenyi S. REACH: regulation (EC) No 1907/2006: consolidated version (June 2012) with an introduction and future prospects regarding the area of Chemicals legislation. GRIN Verlag; 2012.

4. Deepa P., Jayakannan M. Solvent-Free and Nonisocyanate Melt Transurethane Reaction for Aliphatic Polyurethanes and Mechanistic Aspects. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 7, 2445– 2458.

5. Pan W.C., Lin C.H., Dai S.A. High-Performance Segmented Polyurea by Transesterification of Diphenyl Carbonates with Aliphatic Diamines. J. Polym. Sci. Part A: Polym. Chem., 2014, 52, 19, 2781–2790.

6. Pan D.D., Tian H.S. Polycarbonate Polyurethane Elastomers Synthesized via a Solvent-Free and Nonisocyanate Melt Transesterification Process. J. Appl. Polym. Sci., 2015, 132, 7, 41377.

7. Li S.Q., Zhao J.B., Zhang Z.Y., Zhang J.Y., Yang W.T. Synthesis and characterization of aliphatic thermoplastic poly(ether urethane) elastomers through a non-isocyanate route. Polymer, 2015, 57, 164–172.

8. Figovsky O., Shapovalov L., Leykin A., Birukova O., Potashnikova R. Recent advances in the development of non-isocyanate polyurethanes based on cyclic carbonates. PU MAGAZINE, 2013, 10, 4, 256–263.

9. Delebecq E., Pascault J-P., Boutevin B., Ganachaud F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013, 113, 1, 80– 118 (Part 5).

10. Kathalewar M.S., Joshi P.B., Sabnis A.S., Malshe V.C. Non-isocyanate polyurethanes: from chemistry to application. RSC Adv., 2013, 3, 13, 4110–4129.

11. Blattmann H., Fleischer M., Bähr M., Mülhaupt R. Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide. Macromol. Rapid Commun. 2014, 35, 14, 1238−1254.

12. Besse V., Camara F., Voirin C., Auvergne R., Caillol S., Boutevin B. Synthesis and applications of unsaturated cyclocarbonates. Polym. Chem., 2013, 4, 17, 4545–4561.

13. Rokicki G., Parzuchowski P.G., Mazurek M. Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym. Adv. Technol., 2015, 26, 7, 707–761.

14. Maisonneuve L., Lamarzelle O., Rix E., Grau E., Cramail H. Isocyanate-Free Routes to Polyurethanes and Poly(hydroxyl Urethane)s. Chem. Rev., 2015, 115, 22, 12407–12439.

15. Datta Janusz, Włoch Marcin. Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym. Bull., 2016, 73, Online First, 1–38.

16. Brocas A.-L., Cendejas G., Caillol S., Deffieux A., Carlotti S. Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 12, 2677–84.

17. Benyahya S., Desroches M., Auvergne R., Carlotti S., Caillol S. and Boutevin B.. Synthesis of glycerin carbonate-based intermediates using thiol–ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym. Chem., 2011, 2, 11, 2661–2667.

18. Camara F., Caillol S., Boutevin B. Free radical polymerization study of glycerin carbonate methacrylate for the synthesis of cyclic carbonate functionalized polymers. European Polymer J., 2014, V. 61, P. 133–144.

19. Alaaeddine A., Boschet F., Ameduri B., Boutevin B. Synthesis and Characterization of Original Alternated Fluorinated Copolymers Bearing Glycidyl Carbonate Side Groups. J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 16, 3303–3312.

20. Benyahya S., Habas J-P., Auvergne R., Lapinte V. and Caillol S. Structure-property relationships in polyhydroxyurethanes produced from terephthaloyl dicyclocarbonate with various polyamines. Polym. Int., 2012, 61, 11, 1666–1674.

21. Besse V., Foyer G., Auvergne R., Caillol S., Boutevin B. Access to Nonisocyanate Poly(thio)urethanes: A Comparative Study. J. Polym. Sci. Part A: Polym. Chem., 2013, 51, 15, 3284–3296.

22. Benyahya S., Boutevin B., Caillol S., Lapinte V. and Habas J.-P. Optimization of the synthesis of polyhydroxyurethanes using dynamic rheometry. Polym. Int., 2012, 61, 6, 918–925.

23. Camara F., Benyahya S., Besse V., Boutevin G., Auvergne R., Boutevin B., Caillol S. Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes. European Polym. J., 2014, 55, 17–26.

24. Blain M., Jean-Gérard L., Auvergne R., Benazet D., Caillol S., Andrioletti B. Rational investigations in the ring opening of cyclic carbonates by amines. Green Chem., 2014, 16, 9, 4286–4291.

25. M.V. Zabalov, R.P. Tiger, A.A. Berlin. Reaction of cyclocarbonates with amines as an alternative route to polyurethanes: A quantum-chemical study of reaction mechanism. Doklady Chemistry, 2011, 441, 2, 355–360.

26. Zabalov M.V., Tiger R.P., Berlin A.A. Mechanism of urethane formation from cyclocarbonates and amines: a quantum chemical study. Russian Chem. Bull., 2012, 61, 3, 518–527.

27. Zabalov M.V., Levina M.A., Krasheninnikov V.G., Tiger R.P. Bifunctional catalysis by acetic acid in the urethane formation from cyclocarbonates and amines: quantum chemical and kinetic study. Russian Chem. Bull., 2014, 63, 8, 1740–1752.

28. Desroches M., Auvergne R., Boutevin B., Caillol S. Synthesis of bio-based building blocks from vegetable oils: a platform chemicals approach. OCL, 2013, 20, 1, 16–22.

29. Desroches M., Benyahya S., Besse V., Auvergne R., Boutevin B., Caillol S. Synthesis of bio-based building blocks from vegetable oils: A platform chemicals approach. Lipid Technology, 2014, 26, 2, 35–38.

30. Besse V., Auvergne R., Carlotti S., Boutevin G., Otazaghine B., Caillol S., Pascault J-P., Boutevin B. Synthesis of isosorbide based polyurethanes: An isocyanate free method. Reactive & Functional Polymers, 2013, 73, 3, 588–594.

31. Fache M., Darroman E., Besse V., Auvergne R., Caillol S., Boutevin B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem., 2014, 16, 4, 1987–1998.

32. Maisonneuve L., Wirotius A.-L., Alfos C., Grau E. and Cramail H. Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors. Polym. Chem., 2014, 5, 21, 6142–6147.

33. Maisonneuve L., More A.S., Foltran S., Alfos C., Robert F., Landais Y., Tassaing T., Grau E. and Cramail H. Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Adv., 2014, 4, 49, 25795–25803.

34. Levina M.A., Miloslavskii D.G., Pridatchenko M.L., Gorshkov A.V., Shashkova V.T., Gotlib E.M., Tiger R.P. Green Chemistry of Polyurethanes: Synthesis, Structure, and Functionality of Triglycerides of Soybean Oil with Epoxy and Cyclocarbonate Groups ‒ Renewable Raw Materials for New Urethanes. Polym. Sci., Ser. B, 2015, 57, 6, 584–592.

35. Karateev A., Litvinov D., Kalkamanova O. “Nonisocyanate” Polyhydroxy Urethanes Based on the Raw Material of a Plant Origin. Chemistry Chem. Tech., 2014, 8, 3, 329–338.

36. Dolci E., Michaud G., Simon F., Boutevin Bernard, Fouquay S., Caillol S. Remendable thermosetting polymers for isocyanate-free adhesives: a preliminary study. Polym. Chem., 2015, 6, 45, 7851–7861.

37. Cornille A., Serres J., Michaud G., Simon F., Fouquay S., Boutevin B., Caillol S. Syntheses of epoxyurethane polymers from isocyanate free oligopolyhydroxyurethane. European Polym. J., 2016, 75, 175–189.

38. Villani M., Deshmukh Y.S., Camlibel C., Esteves A.C.C., With G. de. Superior relaxation of stresses and self-healing behavior of epoxy-amine coatings. RSC Adv., 2016, 6, 1, 245–259.


Review

For citations:


Figovsky O., Leykin A., Shapovalov L. NON-ISOCYANATE POLYURETHANES – YESTERDAY, TODAY AND TOMORROW. Alternative Energy and Ecology (ISJAEE). 2016;(3-4):95-108. (In Russ.) https://doi.org/10.15518/isjaee.2016.03-04.009

Views: 3210


ISSN 1608-8298 (Print)