

COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: СОNNECTION OVERALL CURRENT WITH TEMPERATURE OF ACTIVE LAYER
https://doi.org/10.15518/isjaee.2015.23.014
Abstract
In the cathode active layer of a fuel cell with a solid polymer electrolyte process of current generation takes place in support grains. The speed of this process essentially depends on a degree of support grains pores filling with water. Calculations show, if support grains pores are completely filled with water, the overall current value in the cathode active layer much less rather in the case when pores partially or even completely free of water. The last variant of a cathode active layer functioning is realized when the speed of emptiness process in pores from moisture due to evaporation exceeds the rate of flooding process of ones with water in the process of current generation. To increase the overall current is possible by increasing a degree of heating-up of the cathode active layer. It is desirable that the temperature of the active layer Ts as much as possible exceed the temperature T, which the fuel cell operates. In this study by method of computer simulation a specific example of determining the overall current value in the cathode active layer is presented. It is shown how overall current increase if magnify difference of temperature Ts–T.
About the Authors
Yu. G. ChirkovRussian Federation
DSc (chemistry), Leading Researcher, A.N. Frumkin Institute of
Physical Chemistry and Electrochemistry, RAS
V. I. Rostokin
Russian Federation
Associate Professor of the department “General physics”, National
Research Nuclear University (MEPhI), PhD (Physic-Mathematical Sciences),
References
1. Rubio M.A., Urquia A., Dormido S. Diagnosis of PEM fuel cells through current interrup-tion. Journal of Power Sources, 2007, vol. 171, pp. 670–677 (in Eng.).
2. Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang X., Liu Z., Abouatalah R., Mazza A. A review of water flooding issues in he proton exchange mem-brane fuel cell. Journal of Power Sources, 2008, vol. 178, pp. 103 (in Eng.).
3. Yousfi-Steiner N., Mocoteguy Ph., Candusso D., Hissel D., Hernandez A., Aslanides A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources, 2008, vol. 183, pp. 260 (in Eng.).
4. Weber A.Z., Hickner M.A. Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochimica Acta, 2008, vol. 53, pp. 7668–7674 (in Eng.).
5. Tushar Swamy, Kumbur E.C., and Mench M.M. Characterization of Interfacial Structure in PEFCs: Water Storage and Contact Resistance Model. Journal of the Electrochemical Society, 2010, vol. 157(1), pp. B77-B85 (in Eng.).
6. Xuhai Wang and Trung Van Nguyen. Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell. Journal of The Electro-chemical Society, 2010, vol. 157(4), pp. B496-B505 (in Eng.).
7. Rubio M.A., Urquia A., Dormido S. Diagnosis of performance degradation phenomena in PEM fuel cells. International Journal of Hydrogen Energy, 2010, vol. 35, pp. 2586–2590.
8. Jiao K., Li X. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 2011, vol. 37, pp. 221 (in Eng.).
9. Li Chen, Hui-Bao Luan, Ya-Ling He, Wen-Quan Tao. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with inter-digitated flowfields. International Journal of Thermal Sciences, 2012, vol. 51, pp. 132–144 (in Eng.).
10. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications / Ed. Zhang J. Springer Verlag London Limited, 2008 (in Eng.).
11. Xie J., Wood I.D.L., Wayne D.M., Zawodzinski T.A., Atanassov P., Borup R.L. Durability of PEFCs at high humidity conditions. J. Electrochem. Soc., 2005, vol. 152, pp. A104 (in Eng.).
12. Mukherjee P.P., Wang C.Y. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J. Electrochem. Soc., 2006, vol. 153, pp. A840 (in Eng.).
13. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part I. Mechanical model. J. Power Sources, 2008, vol. 175, pp. 699 (in Eng.).
14. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part II. Simulation and understanding. J. Power Sources, 2008, vol. 175, pp. 712 (in Eng.).
15. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj katoda toplivnogo èlementa s polimer-nym èlektrolitom: priroda kanalov podači protonov i kisloroda. Èlektrohimiâ, 2012, vol. 48, pp. 1192. [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2012, vol. 48, pp. 1086] (in Russ.).
16. Chirkov Yu.G., Rostokin V.I. Katod toplivnogo èlementa s tverdym polimernym èlektrolitom: konstruirovanie optimalʹnoj struktury aktivnogo sloâ. Èlektrohimiâ, 2014, vol. 50 (9), pp. 968. [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2014, vol. 50 (9), pp. 872] (in Russ.).
17. Chirkov Yu.G. Poristye èlektrody v èlektrohimičeskih tehnologiâh: kompʹûternoe modelirovanie. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 59 (in Russ.).
18. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s polimernym èlektrolitom: učet processa diffuzii kisloroda v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 6, pp. 8 (in Russ.).
19. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s polimernym èlektrolitom: o faktorah, tormozâŝih polnocennoe protekanie processa generacii toka. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 8 (in Russ.).
20. Chirkov Yu.G., Rostokin V.I. Process zatopleniâ vodoj aktivnogo sloâ katoda top-livnogo èlementa s tverdym polimernym èlektrolitom. International Scientific Journal for Alternative Energy and Ecology (IS-JAEE), 2014, no. 14, pp. 58 (in Russ.).
21. Chirkov Yu.G., Rostokin V.I. O stepeni zapolneniâ zeren podložki vodoj: ak-tivnyj sloj katoda toplivno-go èlementa s nafionom. Kompʹûternoe modelirovanie. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 17, pp. 57 (in Russ.).
22. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom: kak možno uveličitʹ veličinu gabaritnogo toka, reguliruâ vlagoobmen v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015, no. 4, pp. 46 (in Russ.).
23. Parthasarathy A., Srinivasan S., Appleby A.J., Martin C.R. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion – a microelectrode investigation. J. Electrochem. Soc., 1992, vol. 139, pp. 2530 (in Russ.).
24. Chirkov Yu.G., Rostokin V.I. Teoriâ poristyh èlektrodov: rasčet gabaritnyh harak-teristik katoda dlâ slučaâ, kogda polârizacionnaâ krivaâ imeet učastki s različnymi naklonami. Èlektrohimiâ, 2006, vol. 42 (7), pp. 806. [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2006, vol. 42 (9), pp. 722] (in Russ.).
Review
For citations:
Chirkov Yu.G., Rostokin V.I. COMPUTER SIMULATION OF ACTIVE LAYER FUEL CELL WITH POLYMER ELECTROLYTE: СОNNECTION OVERALL CURRENT WITH TEMPERATURE OF ACTIVE LAYER. Alternative Energy and Ecology (ISJAEE). 2015;(23):105-115. (In Russ.) https://doi.org/10.15518/isjaee.2015.23.014