

ACTIVE LAYER OF FUEL CELL CATHODE WITH POLYMER ELECTROLYTE: COMPUTER SIMULATION PROCESS OF MOISTURE EXCHANGE IN SUPPORT GRAINS
https://doi.org/10.15518/isjaee.2016.01-02.008
Abstract
In the cathode active layer of a fuel cell with a solid polymer electrolyte process, the current generation takes place in support grains (agglomerates of carbon particles with supported platinum). The speed of this process essentially depends on a degree of support grains pores filling with water. Calculations show if support grains pores are completely filled with water the overall current density in the cathode active layer is much less than in the case of the pores partially or even completely free of water. The last variant of a cathode active layer functioning is realized when the release rate of pores from moisture due to evaporation and filtration of water exceeds the rate of flooding process of ones with water in the process of current generation. This study by method of computer simulation presents a specific example of determining the overall current density in the cathode active layer with varying the speed of emptiness process in pores from moisture due to filtration.
About the Authors
Yu. G. ChirkovRussian Federation
D.Sc. (chemistry), leading researcher, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
V. I. V.I. Rostokin
Russian Federation
Ph.D. (physics and mathematics), associate professor of the General physics department, National Research Nuclear University (MEPhI)
References
1. Rubio M.A., Urquia A., Dormido S. Diagnosis of PEM fuel cells through current interrup-tion. Journal of Power Sources, 2007, vol. 171, pp. 670–677 (in Eng.).
2. Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang X., Liu Z., Abouatallah R., Mazza A. A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 2008, vol. 178, pp. 103–117 (in Eng.).
3. Yousfi-Steiner N., Mocoteguy Ph., Candusso D., Hissel D., Hernandez A., Aslanides A. A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources, 2008, vol. 183, pp. 260–274 (in Eng.).
4. Weber A.Z., Hickner M.A. Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochimica Acta, 2008, vol. 53, pp. 7668– 7674 (in Eng.).
5. Tushar Swamy, Kumbur E.C., and Mench M.M. Characterization of Interfacial Structure in PEFCs: Water Storage and Contact Resistance Model. Journal of the Electrochemical Society, 2010, vol. 157(1), pp. B77-B85 (in Eng.).
6. Xuhai Wang and Trung Van Nguyen. Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell. Journal of The Electro-chemical Society, 2010, vol. 157(4), pp. B496-B505 (in Eng.).
7. Rubio M.A., Urquia A., Dormido S. Diagnosis of performance degradation phenomena in PEM fuel cells. International Journal of Hydrogen Energy, 2010, vol. 35, pp. 2586–2590.
8. Jiao K., Li X. Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 2011, vol. 37, pp. 221–291 (in Eng.).
9. Li Chen, Hui-Bao Luan, Ya-Ling He, Wen-Quan Tao. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with inter-digitated flowfields. International Journal of Thermal Sciences, 2012, vol. 51, pp. 132–144 (in Eng.).
10. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications / Ed. Zhang J. Springer Verlag London Limited, 2008 (in Eng.).
11. Xie J., Wood I.D.L., Wayne D.M., Zawodzinski T.A., Atanassov P., Borup R.L. Durability of PEFCs at high humidity conditions. J. Electrochem. Soc., 2005, vol. 152, pp. A104–A113 (in Eng.).
12. Mukherjee P.P., Wang C.Y. Stochastic micro-structure reconstruction and direct numerical simulation of the PEFC catalyst layer. J. Electrochem. Soc., 2006, vol. 153, pp. A840–A849 (in Eng.).
13. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part I. Mechanical model. J. Power Sources, 2008, vol. 175, pp. 699–711 (in Eng.).
14. Rong F., Huang C., Liu Z.OS., Song D., Wang Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling. Part II. Simulation and understanding. J. Power Sources, 2008, vol. 175, pp. 712–723 (in Eng.).
15. Chirkov Yu.G., Rostokin V.I. Aktivnyj sloj katoda toplivnogo èlementa s polimernym èlektrolitom: priroda kanalov podači protonov i kisloroda. Èlektrohimiâ, 2012, vol. 48, pp. 1192–1204. [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2012, vol. 48, pp. 1086] (in Russ.).
16. 16 Chirkov Yu.G., Rostokin V.I. Katod toplivnogo èlementa s tverdym polimernym èlektrolitom: konstruirovanie optimalʹnoj struktury aktivnogo sloâ. Èlektrohimiâ, 2014, vol. 50 (9), pp. 968–982 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem, 2014, vol. 50 (9), pp. 872] (in Russ.).
17. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s polimernym èlektrolitom: učet processa diffuzii kisloroda v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 6, pp. 8–15 (in Russ.).
18. Chirkov Yu.G., Poristye èlektrody v èlektrohimičeskih tehnologiâh: kompʹûternoe modelirovanie. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 8–21 (in Russ.).
19. Chirkov Yu.G., Poristye èlektrody v èlektrohimičeskih tehnologiâh: kompʹûternoe modelirovanie, International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 9, pp. 55–59 (in Russ.).
20. 20 Chirkov Yu.G., Rostokin V.I. Process zatopleniâ vodoj aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom, International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 14, pp. 58–68 (in Russ.).
21. Chirkov Yu.G., Rostokin V.I. O stepeni zapolneniâ zeren podložki vodoj: aktivnyj sloj katoda top-livnogo èlementa s nafionom. Kompʹûternoe modelirovanie, International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2014, no. 17, pp. 57–65 (in Russ.).
22. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom: kak možno uveličitʹ veličinu gabaritnogo toka, reguliruâ vlagoobmen v zernah podložki. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015, no. 4, pp. 46–57 (in Russ.).
23. Chirkov Yu.G., Rostokin V.I. Kompʹûternoe modelirovanie aktivnogo sloâ katoda toplivnogo èlementa s tverdym polimernym èlektrolitom: svâzʹ veličiny gabaritnogo toka s temperaturoj aktivnogo sloâ, International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2015, no. 23, pp. 105–115 (in Russ.).
24. 24 Parthasarathy A., Srinivasan S., Appleby A.J., Martin C.R. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion – a microelectrode investigation. J. Electrochem. Soc., 1992, vol. 139, pp. 2530–2537 (in Eng.).
25. Polubarinova-Kochina P.Ya. Teoriâ dviženiâ gruntovyh vod. Moscow: Nauka Publ., 1977 (in Russ.).
26. Teoretičeskie osnovy inženernoj geologii. Mehaniko-matematičeskie osnovy. Moscow: Nedra Publ., 1986 (in Russ.).
27. Shestakov V.M. Gidrogeodinamika. Moscow: MGU Publ., 1995 (in Russ.).
28. Nerpin S.V., Chudnovskij A.F. Fizika počvy. Moscow: Nauka Publ., 1967 (in Russ.).
29. Amaglobeli I.P. Filʹtraciâ nenʹûtonovskih židkostej čerez grunty i betony. Statʹâ v knige Filʹtraciâ vody čerez beton, betonnye konstrukcii i sooruženiâ. Leningrad: Ènergiâ Publ., 1971 (in Russ.).
30. Bondarenko V.F. Fizika dviženiâ pozemnyh vod. Leningrad: Gidrometeoizdat Publ., 1973 (in Russ.).
31. Fizika počvennyh vod. Moscow: Nauka Publ., 1981 (in Russ.).
32. Chirkov Yu.G., Rostokin V.I. Teoriâ poristyh èlektrodov: rasčet gabaritnyh harakteristik katoda dlâ slučaâ, kogda polârizacionnaâ krivaâ imeet učastki s različnymi naklonami. Èlektrohimiâ, 2006, vol. 42 (7), pp. 806–812 [Chirkov Yu.G., Rostokin V.I. Russ. J. Electrochem., 2006, vol. 42 (9), pp. 722.] (in Russ.).
Review
For citations:
Chirkov Yu.G., V.I. Rostokin V.I. ACTIVE LAYER OF FUEL CELL CATHODE WITH POLYMER ELECTROLYTE: COMPUTER SIMULATION PROCESS OF MOISTURE EXCHANGE IN SUPPORT GRAINS. Alternative Energy and Ecology (ISJAEE). 2016;(1-2):76-87. (In Russ.) https://doi.org/10.15518/isjaee.2016.01-02.008