

HYDROGEN AND AMMONIAC HYDROGENATION OF EUTECTIC ALLOY OF SYSTEM Mg–Ni
https://doi.org/10.15518/isjaee.2016.09-10.058-065
Abstract
About the Authors
V. N. FokinRussian Federation
1 Acad. Semenov ave., Chernogolovka, Moscow reg., 142432
Information about author: PhD (chemistry), senior researcher of Institute of Problems of Chemical Physics of RAS.
Education: Chemical department, Moscow State University, 1968.
Research area: chemistry of hydrides of metals and intermetallic compounds; state of compounds; hydrogen material science.
Publication: 210.
E. E. Fokina
Russian Federation
1 Acad. Semenov ave., Chernogolovka, Moscow reg., 142432
Information about author: researcher of Institute of Problems of Chemical Physics of RAS.
Education: Chemical department, Moscow State University, 1968.
Research area: chemistry of hydrides of metals and intermetallic compounds.
Publication: 125.
S. A. Mozhzhukhin
Russian Federation
1 Acad. Semenov ave., Chernogolovka, Moscow reg., 142432
Information about author: graduate student of Ivanovo State University, engineer of Institute of Problems of Chemical Physics of RAS.
Education: Ivanovo State University, 2012.
Research area: chemistry of hydrides and graphene nanostructures; hydrogen storage; hydrogen energy.
Publication: 3.
B. P. Tarasov
Russian Federation
1 Acad. Semenov ave., Chernogolovka, Moscow reg., 142432
Information about the author: Ph.D. (chemistry), Head of Laboratory of Institute of Problems of Chemical Physics of RAS.
Education: Chemical department, Moscow State University, 1978.
Research area: chemistry of hydrides and carbon nanostructures; hydrogen and carbon material science; hydrogen energy.
Publication: more than 400.
E-library: 255 papers, 2530 citations, h-index 21.
References
1. Tarasov B.P., Lototskyy M.V. Vodorodnaâ ènergetika: prošloe, nastoâŝee, vidy na buduŝee. Rossijskij himičeskij žurnal, 2006, vol. L, no. 6, pp. 5–18 (in Russ.).
2. Tarasov B.P., Lotockij M.V., Yartys’ V.A. Problema hraneniâ vodoroda i perspektivy ispol’zovaniâ gidridov dlâ akkumulirovaniâ vodoroda. Rossijskij himičeskij žurnal, 2006, vol. L, no. 6, pp. 34–48 (in Russ.).
3. Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007, vol. 32, pp. 1121–1140 (in Eng.).
4. Zaluska A., Zaluski L., Strőm-Olsen J.O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, vol. 288, no. 1–2, pp. 217–225 (in Eng.).
5. Klyamkin S.N., Lukashev R.V., Tarasov B.P., Borisov D.N., Fokin V.N., Yartys’ V.A. Vodorodsorbiruûŝie kompozity na osnove magniâ. Materialovedenie, 2005, no. 9, pp. 53–56 (in Russ.).
6. Klyamkin S.N. Metallogidridnye kompozicii na osnove magniâ kak materialy dlâ akkumulirovaniâ vodoroda. Rossijskij himičeskij žurnal, 2006, vol. L, no. 6, pp. 49–55 (in Russ.).
7. Fursikov P.V., Borisov D.N., Tarasov B.P. Gidrirovanie nanostrukturirovannyh splavov i kompozitov na osnove magniâ. Izvestiâ AN, Seriâ himičeskaâ, 2011, no. 9, pp. 1816–1824 (in Russ.).
8. Gennari F.C., Castro F.J., Urretavizcaya G. Hydrogen desorption behavior from magnesium hydrides syn-thesized by reactive mechanical alloying. Journal of Alloys and Compounds, 2001, vol. 321, no. 1, pp. 46–53 (in Eng.).
9. Holts R.L., Imam M.A. Hydrogen storage characteristics of ball-milled magnesium-nickel and magnesium-iron alloys. Journal of Materials Science, 1999, vol. 34, no. 11, pp. 2655–2663 (in Eng.).
10. Williams M., Sibanyoni J., Lototskyy M., Pollet B. Hydrogen absorption study of high-energy reactive ball milled Mg composites with palladium additives. Journal of Alloys and Compounds, 2013, vol. 580, pp. 144–148 (in Eng.).
11. Yu H., Bennici S., Auroux A. Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. international Journal of Hydrogen Energy, 2014, vol. 39, no. 22, pp. 11633–11641 (in Eng.).
12. Zhou Ch., Fang Zh., Ren Ch., Li J., Lu J. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. Journal of Physical Chemistry C, 2013, vol. 117, no. 25, pp. 12973–12980 (in Eng.).
13. House S., Vajo J., Ren Ch., Rockett A., Robertson I. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Materialia, 2015, vol. 86, pp. 55–68 (in Eng.).
14. Is mail M., Juahir N., Mustafa N.S. Improved hydrogen storage properties of MgH2 Co-doped with FeCl3 and carbon nanotubes. Journal of Physical Chemistry C, 2014, vol. 118, pp. 18878–18883 (in Eng.).
15. Lukashev R.V., Klyamkin S.N., Tarasov B.P. Polučenie i svojstva vodorod-akkumuliruûŝih kompozitov v sisteme MgH2–C. Neorganičeskie materialy, 2006, vol. 42, no. 7, pp. 803–810 (in Russ.).
16. Imamura H., Tabata S., Shigetomi N., Takesue Y., Sakata Y. Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. Journal of Alloys and Compounds, 2002, vol. 330–332, pp. 579–583 (in Eng.).
17. Borisov D.N., Fursikov P.V., Tarasov B.P. Influence of carbonaceous additives to hydrogen sorption prop-erties of Mg-RE-Ni pseudoalloys. International Journal of Hydrogen Energy, 2011, vol. 36, no. 1, pp. 1326–1329 (in Eng.).
18. Cai W., Zhou X., Xia L., Jiang K., Peng Sh., Long X., Liang J. Effects of carbon nanotubes on the dehy-drogenation behavior of magnesium hydride at relatively low temperatures. Journal of Materials Chemistry A, 2014, vol. 2, pp. 16369–16372 (in Eng.).
19. Liu G., Wang Y., Jiao L., Yuan H. Understanding the role of few-layer graphene nanosheets in enhancing the hydrogen sorption kinetics of magnesium hydride. ACS Applied Materials & Interfaces, 2014, vol. 6, pp. 11038–11046 (in Eng.).
20. Rud A.D., Lakhnik A.M. Effect of carbon allotropes on the structure and hydrogen sorption during reactive ball-milling of Mg–C powder mixtures. International Journal of Hydrogen Energy, 2012, vol. 37, no. 5, pp. 4179–4187 (in Eng.).
21. Schlapbach L., Shaltiel D., Oelhafen P. Catalytic effect in the hydrogenation of Mg and Mg compounds: Surface analysis of Mg+Mg2Ni and Mg2Ni. Materials Research Bulletin, 1979, vol. 14, no. 9, pp. 1235–1246 (in Eng.).
22. Semenenko K.N., Burnasheva V.V., Fokina È.È., Fokin V.N., Troitskaya S.L. K voprosu o mehanizme gidrirovaniâ metallov v prisutstvii intermetalličeskih soedinenij. Žurnal obŝej himii, 1989, vol. 59, no. 10, pp. 2173–2177 (in Russ.).
23. Tarasov B.P., Fokina È.È., Fokin V.N. Himičeskie metody dispergirovaniâ metalličeskih faz. Izvestiâ AN. Seriâ himičeskaâ, 2011, no. 7, pp. 1228–1236 (in Russ.).
24. Tarasov B.P., Fokina È.È., Fokin V.N. Sintez gidridov intermetalličeskih soedinenij. Žurnal obŝej himii, 2014, vol. 84, no. 2, pp. 199–203 (in Russ.).
25. Diagrammy sostoâniâ dvojnyh metalličeskih sistem: Spravočnik, vol. 3, book. 1. Moscow: Mašinostroenie Publ., 2001 (in Russ.).
26. Song M.Y., Park H.R. Pressure–composition isotherms in the Mg2Ni–H2 system. Journal of Alloys and Compounds, 1998, vol. 270, pp. 164–167 (in Eng.).
27. Tarasov B.P. Metal-hydride accumulators and generators of hydrogen for feeding fuel cells. International Journal of Hydrogen Energy, 2011, vol. 36, no. 1, pp. 1196–1199 (in Eng.).
28. Zaluska A., Zaluski L., Strőm-Olsen J.O. Structure, catalysis and atomic reactions on the nano-scale: A sys-tematic approach to metal hydrides for hydrogen storage. Applied Physics A, 2001, vol. 72, pp. 157–165 (in Eng.).
29. Fokin V.N., Fokina È.È., Tarasov B.P. Gidridnoe i ammiačnoe dispergirovanie metallov. Žurnal neorganičeskoj himii, 2010, v. 55, no. 10, pp. 1628–1633 (in Russ.)
Review
For citations:
Fokin V.N., Fokina E.E., Mozhzhukhin S.A., Tarasov B.P. HYDROGEN AND AMMONIAC HYDROGENATION OF EUTECTIC ALLOY OF SYSTEM Mg–Ni. Alternative Energy and Ecology (ISJAEE). 2016;(9-10):58-65. (In Russ.) https://doi.org/10.15518/isjaee.2016.09-10.058-065