Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

COMPOSITES BASED ON REDUCED GRAPHENE OXIDE AND NICKEL HYDROXIDE AS A PROMISING MATERIAL FOR HYBRID SUPERCAPACITORS

Abstract

Using microwave irradiation reduced graphene oxide (RGO) and nickel hydroxide as precursors the composites (Ni-RGO) of variable composition were prepared in two ways : by precipitation of Ni(OH)2 on RGO in situ, and mixing the suspensions RGO and Ni(OH)2. It was established that the Ni-RGO composites have a high specific capacity when tested as a super-capacitor electrode in 1M KOH (150 to 330 F/g). It was shown that RGO has high stability during cycling mode of the charge-discharge capacity but a low (~ 25 F/g). Pure Ni(OH)2, on the contrary, has a high specific capacity in the range of 450-500 F/g, but lack the stability during cycling. Capacitive and stability galvanostatic tests of composites Ni-RGO take intermediate values compared with their components, depending on the percentage of Ni(OH)2. The introduction of RGO enhanced the resistance of electrode mass during cycling during the first 100 charge/discharge cycles. Thus, RGO can serve as a stabilizing additive which increase the life and the range of the operating current of super-capacitors based on Ni(OH)2.

About the Authors

S. A. Baskakov
Federal State Budget Scientific Agency Institute of Problems of Chemical Physics RAS
Russian Federation


Y. V. Baskakova
Institute of Materials Science. IM Frantsevich NAS
Russian Federation


A. D. Zolotarenko
Federal State Budget Scientific Agency Institute of Problems of Chemical Physics RAS
Russian Federation


Y. M. Shulga
Federal State Budget Scientific Agency Institute of Problems of Chemical Physics RAS
Russian Federation


O. N. Efimov
Federal State Budget Scientific Agency Institute of Problems of Chemical Physics RAS
Russian Federation


A. L. Gusev
LLC "Scientific and Technical Center" TATA ""
Russian Federation


References

1. Полякова А.Л., Васильев, Б.М., Купенко И.Н. и др. Изменение зонной структуры полупроводников под давлением // Физика и техникаполупроводников. 1976. Т. 9, № 11. С. 2356-2358.

2. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage // Adv. Mater. 2010. 22, Ε1-Ε35.

3. Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Progress of electrochemical capacitor electrode materials: a review // Int. J. Hydrogen Energy. 2009. 34, р. 4889-4899

4. H.Q. Cao, H. Zheng, K.Y. Liu, J.H. Warner, Bioinspired peony-like ß-Ni(OH)2 nanostructures with enhanced electrochemical activity and superhydrophobicity // ChemPhysChem. 2010. 11, р. 489-494.

5. G. Duan, W. Cai, Y. Luo, F. Sun, A hierarchically structured Ni(OH)2 monolayer hollow-sphere array and its tunable optical properties over a large region // Adv. Funct. Mater. 2007. 17 р. 644-650.

6. Y.Y. Luo, G.H. Li, G.T. Duan, L.D. Zhang, One-step synthesis of spherical a-Ni(OH)2 nanoarchitectures // Nanotechnology. 2006. 17, р. 4278-4283.

7. D. Linden, Handbook of Batteries, McGraw-Hill, New York, 2002.

8. J. McBreen, Modern Aspects of Electrochemistry, vol. 21, Plenum, New York,1990.

9. M.S. Wu, C.M. Huang, Y.Y. Wang, C.C. Wan, Effects of surface modification of nickel hydroxide powder on the electrode performance of nickel/metal hydride batteries // Electrochim. Acta. 1999. 44(23), p.4007-4016.

10. Shul'ga Yu.M., Lobach A.S., Baskakov S.A. et al. A comparative study of graphene materials formed by thermal exfoliation of graphite oxide and chlorine trifluoride-intercalated graphite // High Energy Chem. 2013. 47(6), p 331-338

11. С.А. Баскаков, Ю.М. Шульга, Ю.В. Баскакова, А. Д. Золотаренко, И.Е. Кузнецов, О.Н. Ефимов, А. Л. Гусев. Новые композитные материалы на основе восстановленного оксида графена и полианилина для электродов суперконденсаторов высокой емкости // Альтернативная энергетика и экология. 2012. 12(116), с. 66-76

12. В.Е. Мурадян, М.Г. Езерницкая, В.И. Смирнова, Н.М. Кабаева и др. Превращение окиси графита в условиях ионного гидрирования. // ЖОХ. 1991. Т.61, Вып.12, с.2626-2629

13. Si Y., Samulski E.T. Synthesis of water soluble grapheme // Nano Lett. 2008. V 8. P. 1679-1682.

14. Jeong H.-K., Lee Y.P., Jin M.H. et al. Thermal stability of graphite oxide // Chem. Phys. Lett. 2009. 470, р. 255-258.

15. Cote L.J., Cruz-Silva R., Huang J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite // J. Am. Chem. Soc. 2009. V. 131. P. 1102711032.

16. Lin Yang, Jianguo Zhu, Dingquan Xiao. Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics // RSC Adv. 2012. 2, p.8179-8188

17. F.S. Cai, G.Y. Zhang, J. Chen, X.L. Gou, H.K. Liu, S.X. Dou. Ni(OH)2Tubes with Mesoscale Dimensions as Positive-Electrode Materials of Alkaline Rechargeable Batteries// Angew. Chem. Int. Ed. 2004. 43(32), р.4212-4216. a review // Int. J. Hydrogen Energy. 2009. 34, r. 48894899.

18. D.A. Corrigan, R.M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1М KOH// J. Electrochem. Soc. 1989. 136(3), р.723-728


Review

For citations:


Baskakov S.A., Baskakova Y.V., Zolotarenko A.D., Shulga Y.M., Efimov O.N., Gusev A.L. COMPOSITES BASED ON REDUCED GRAPHENE OXIDE AND NICKEL HYDROXIDE AS A PROMISING MATERIAL FOR HYBRID SUPERCAPACITORS. Alternative Energy and Ecology (ISJAEE). 2014;(2):146-156. (In Russ.)

Views: 599


ISSN 1608-8298 (Print)