Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

ПЕРСПЕКТИВНЫЕ ОРГАНИЧЕСКИЕ КАТОДНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СОПРЯЖЕННЫХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ ДЛЯ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

https://doi.org/10.15518/isjaee.2015.08-09.014

Полный текст:

Аннотация

В обзоре рассмотрены работы по разработке органических катодных материалов для литиевых аккумуляторов. Среди всех классов органических катодов материалы на основе сопряженных карбонильных соединений имеют потенциал для достижения одновременно высокой плотности энергии, высокой стабильности циклирования и высокой удельной мощности. Обзор состоит из трех частей, посвященных катодам на основе малых молекул сопряженных карбонильных соединений и двух видов их производных: полимеров и солей лития.  

Об авторах

А. А. Игнатова
Институт проблем химической физики РАН
Россия
аспирант ИПХФ РАН


О. В. Ярмоленко
Институт проблем химической физики РАН
Россия
д-р хим. наук, зав. лабораторией ИПХФ РАН


Список литературы

1. Williams D.L., Byrne J.J., Driscoll J.S. A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System // J. Electrochem. Soc. 1969. Vol. 116, Iss. 1. P. 2-4.

2. Yoshino A. The Birth of the Lithium-Ion Battery // Angew. Chem., Int. Ed. 2012. Vol. 51. P. 5798–5800.

3. Novak P., Muller K., Santhanam K.S.V., Haas O. Electrochemically active polymers for rechargeable batteries // Chem. Rev. 1997. Vol. 97. P. 207-282.

4. Song Z., Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials // Energy Environ. Sci. 2013. Vol. 6. P. 2280-2301.

5. Haupler B., Wild A., Schubert U.S. Carbonyls: powerful organic materials for secondary batteries // Adv. Energy Mater. 2015. 1402034-1402067.

6. Melot B.C., Tarascon J.-M. Design and Preparation of Materials for Advanced Electrochemical Storage // Acc. Chem. Res. 2013. Vol. 46. P. 1226-1238.

7. Park C.-M., Sohn H.-J. Black Phosphorus and its Composite for Lithium Rechargeable Batteries // Adv. Mater. 2007. Vol. 19. P. 2465-2468.

8. Liu F.-C., Liu W.-M., Zhan M.-H., Fu Z.-W., Li H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I−ion electrolyte // Energy Environ. Sci. 2011. Vol. 4. P. 1261-1264.

9. Nigrey P.J., MacInnes D., Jr, Nairns D.P., MacDiarmid A.G., Heeger A.J. Lightweight Rechargeable Storage Batteries Using Polyacetylene, (CH)x as the Cathode-Active Material // J. Electrochem. Soc. 1981. Vol. 128. P. 1651-1654.

10. Shacklette L.W., Toth J.E., Murthy N.S., Baughman R.H. Polyacetylene and Polyphenylene as Anode Materials for Nonaqueous Secondary Batteries // J. Electrochem. Soc. 1985. Vol. 132. P. 1529-1535.

11. Zhu L.M., Lei A.W., Cao Y.L., Ai X.P., Yang H.X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode // Chem. Commun. 2013. Vol. 49. P. 567-569.

12. MacDiarmid A.G., Yang L.S., Huang W.S., Humphrey B.D. Polyaniline: electrochemistry and application to rechargeable batteries // Synth. Met. 1987. Vol. 18. P. 393-398.

13. Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization: polyaniline // Prog. Polym. Sci. 1998. Vol. 23. P. 1443-1484.

14. Mermilliod N., Tanguy J., Petiot F. A Study of Chemically Synthesized Polypyrrole as Electrode Material for Battery Applications // J. Electrochem. Soc. 1986. Vol. 133. P. 1073-1079.

15. Zhou M., Qian J., Ai X., Yang H. Redox-Active Fe(CN)64--Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries // Adv. Mater. 2011. Vol. 23. P. 4913-4917.

16. Kaneto K., Yoshino K., Inuishi Y. Characteristics of Polythiophene Battery // Jpn. J. Appl. Phys. 1983. Vol. 22. P. L567-568.

17. Liu L., Tian F., Wang X., Yang Z., Zhou M., Wang X. Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability // React. Funct. Polym. 2012. Vol. 72. P. 45-49.

18. Sakaushi K., Hosono E., Nickerl G., Gemming T., Zhou H., Kaskel S., Eckert J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device // Nat. Commun. 2013. Vol. 4. P. 1485-1491.

19. Oyama N., Tatsuma T., Sato T., Sotomura T. Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density // Nature. 1995. Vol. 373. P. 598-600.

20. Deng S.-R., Kong L.-B., Hu G.-Q., Wu T., Li D., Zhou Y.-H., Li Z.-Y. Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries // Electrochim. Acta. 2006. Vol. 51. P. 2589-2593.

21. Zhan L., Song Z., Zhang J., Tang J., Zhan H., Zhou Y., Zhan C. PEDOT: Cathode active material with high specific capacity in novel electrolyte system // Electrochim. Acta. 2008. Vol. 53. P. 8319-8323.

22. Zhan L., Song Z., Shan N., Zhang J., Tang J., Zhan H., Zhou Y., Li Z., Zhan C. Poly(tetrahydrobenzodithiophene): High discharge specific capacity as cathode material for lithium batteries // J. Power Sources. 2009. Vol. 193. P. 859-863.

23. Oyaizu K., Nishide H., Radical polymers for organic electronic devices: A radical departure from conjugated polymers? // Adv. Mater. 2009. Vol. 21. P. 2339-2344.

24. Nakahara K., Oyaizu K., Nishide H. Organic radical battery approaching practical use // Chem. Lett. 2011. Vol. 40. P. 222-227.

25. Janoschka T., Hager M.D., Schubert U.S. Powering up the Future: Radical Polymers for Battery Applications // Adv. Mater. 2012. Vol. 24. P. 6397-6409.

26. Han X., Chang C., Yuan L., Sun T., Sun J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials // Adv. Mater. 2007. Vol. 19. P. 1616-1621.

27. Oyama N., Sarukawa T., Mochizuki Y., Shimomura T., Yamaguchi S. Significant effects of poly(3,4-ethylenedioxythiophene) additive on redox responses of poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) cathode for rechargeable Li batteries // J. Power Sources. 2009. Vol. 189. P. 230-239.

28. Namazian M., Almodarresieh H.A. Computational electrochemistry: aqueous two-electron reduction potentials for substituted quinones // J. Mol. Struct.: THEOCHEM. 2004. Vol. 686. P. 97-102.

29. Alizadeh K., Shamsipur M. Calculation of the two-step reduction potentials of some quinones in acetonitrile // J. Mol. Struct.: THEOCHEM. 2008. Vol. 862. P. 39-43.

30. Sun Y.-K., Myung S.-H., Kim M.-H., Prakash J., Amine K. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries // J. Am. Chem. Soc. 2005. Vol. 127. P. 13411-13418.

31. Cho J., Kim Y.-W., Kim B., Lee J.-G., Park B. A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles // Angew. Chem. Int. Ed. 2003. Vol. 42. P. 1618-1621.

32. Wain A.J., Wildgoose G.G., Heald C.G.R., Jiang L., Jones T.G.J., Compton R.G. Electrochemical ESR and Voltammetric Studies of Lithium Ion Pairing with Electrogenerated 9,10-Anthraquinone Radical Anions Either Free in Acetonitrile Solution or Covalently Bound to Multiwalled Carbon Nanotubes // J. Phys. Chem. B. 2005. Vol. 109. P. 3971-3978.

33. Senoh H., Yao M., Sakaebe H., Yasuda K., Siroma Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries // Electrochim. Acta. 2011. Vol. 56. P. 10145-10150.

34. Zhao L., Wang W.-K., Wang A.-B., Yu Z.-B., Chen S., Yang Y.-S. A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery // J. Electrochem. Soc. 2011. Vol. 158. P. A991-996.

35. Bu P., Liu S., Lu Y., Zhuang S., Wang H., Tu F. Effects of Carbon Black on the Electrochemical Performance of Lithium-Organic Coordination Compound Batteries // Int. J.Electrochem. Sci. 2012. Vol. 7. P. 4617-4624.

36. Zeng R., Xing L., Qiu Y., Wang Y., Huang W., Li W., Yang S. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries // Electrochimica Acta. 2014. Vol. 146. P. 447–454.

37. Reddy A.L.M., Nagarajan S., Chumyim P., Gowda S.R., Pradhan P., Jadhav S.R., Dubey M., John G., Ajayan P.M. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes // Sci. Rep. 2012. Vol. 2. P. 960-964.

38. Liang Y.L., Zhang P., Yang S.Q., Tao Z.L., Chen. J. Fused Heteroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries // Adv. Energy Mater. 2013. Vol. 3. P. 600–605.

39. Tobishima S.-i., Yamaki J.-i., Yamaji A. Cathode Characteristics of Organic Electron Acceptors for Lithium Batteries // J. Electrochem. Soc. 1984. Vol. 131. P. 57-63.

40. Shimizu A., Kuramoto H., Tsujii Y., Nokami T., Inatomi Y., Hojo N., Suzuki H., Yoshida J.-i. Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic cathode materials // Journal of Power Sources. 2014. Vol. 260. P. 211-217.

41. Senoh H., Yao M., Sakaebe H., Yasuda K., Siroma Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries // Electrochimica Acta. 2011. Vol. 56. P. 10145– 10150.

42. Yao M., Senoh H., Yamazaki S., Siroma Z., Sakai T., Yasuda K. High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries // Journal of Power Sources.2010. Vol. 195. P. 8336–8340.

43. Yao M., Ando H., Kiyobayashi T. Dialkoxybenzoquinone-type active materials for rechargeable lithium batteries: the effect of the alkoxy group length on the cycle-stability // Energy Procedia. 2013. Vol. 34. P. 880–887.

44. Kalaiselvi D., Renuka R. Zeolite modification of organic cathodes: clean technology for improved cycle life of the zinc– chloranil organic secondary battery // J. Chem. Technol. Biotechnol. 2000. Vol. 75. P. 285-293.

45. Xu Y., Wen Y., Cheng J., Cao G., Yang Y. Study on a single flow acid Cd–chloranil battery // Electrochem. Commun. 2009. Vol. 11, Iss. 7. P. 1422-1424.

46. Hanyu Y., Ganbe Y., Honma I. Application of quinonic cathode compounds for quasi-solid lithium batteries // J. Power Sources. 2013. Vol. 221. P. 186-190.

47. Hanyu Y., Honma I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode // Sci. Rep. 2012. Vol. 2. P. 453-458.

48. Yao M., Senoh H., Sakai T., Kiyobayashi T. 5,7,12,14-Pentacenetetrone as a High-Capacity Organic Positive Electrode Material for Use in Rechargeable Lithium Batteries // Int. J. Electrochem. Sci. 2011. Vol. 6. P. 2905-2911.

49. Boschi T., Pappa R., Pistoia G., Tocci M. On the use of nonylbenzo-hexaquinone as a substitute for monomeric quinones in non-aqueous cells // J. Electroanal. Chem. 1984. Vol. 176. P. 235-242.

50. Pasquali M., Pistoia G., Boschi T., Tagliatesta P. Redox mechanism and cycling behaviour of nonylbenzo-hexaquinone electrodes in Li cells // Solid State Ionics. 1987. Vol. 23. P. 261-266.

51. Ohzuku T., Wakamatsu H., Takehara Z., Yoshizawa S. Nonaqueous lithium/pyromellitic dianhydride cell // Electrochim. Acta. 1979. Vol. 24. P. 723-726.

52. Han X., Qing G., Sun J., Sun T. How Many Lithium Ions Can Be Inserted onto Fused C6 Aromatic Ring Systems? // Angew. Chem., Int. Ed. 2012. Vol. 51. P. 5147-5151.

53. Geng J., Bonnet J.-P., Renault S., Dolhem F., Poizot P. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit // Energy Environ. Sci. 2010. Vol. 3. P. 1929-1933.

54. Yao M., Araki M., Senoh H., Yamazaki S.-i., Sakai T., Yasuda K. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries // Chem. Lett. 2010. Vol. 39. P. 950-952.

55. Huang W., Zhu Z., Wang L., Wang S., Tao Z., Shi J., Guan L., Chen J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte // Angew. Chem. Int. Ed. 2013. Vol. 52. P. 9162–9166.

56. Iordache A., Maurel V., Mouesca J.-M., Pecaut J., Dubois L., Gutel T. Monothioanthraquinone as an organic active material for greener lithium batteries // Journal of Power Sources. 2014. Vol. 267. P. 553-559.

57. Goriparti S., Harish M.N.K., Sampath S. Ellagic acid – a novel organic electrode material for high capacity lithium ion batteries // Chem. Commun. 2013. Vol. 49. P. 7234-7236.

58. Foos J.S., Erker S.M., Rembetsy L.M. Synthesis and Characterization of Semiconductive Poly-1,4-Dimethoxybenzene and Its Derived Polyquinone // J. Electrochem. Soc. 1986. Vol. 133. P. 836-841.

59. Haringer D., Novak P., Haas O., Piro B., Pham M.-C. Poly(5-amino-1,4-naphthoquinone), a NovelLithium-Inserting Electroactive Polymer with High Specific Charge // J. Electrochem. Soc. 1999. Vol. 146. P. 2393-2396.

60. Le Gall T., Reiman K.H., Grossel M.C., Owen J.R. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries // J. Power Sources. 2003. Vol. 121. P. 316-320.

61. Song Z., Zhan H., Zhou Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries // Chem. Commun. 2009. P. 448-450.

62. Xu W., Read A., Koech P. K., Hu D., Wang C., Xiao J., Padmaperuma A.B., Graff G.L., Liu J., Zhang J.-G. Factors affecting the battery performance of anthraquinone-based organic cathode materials // J. Mater. Chem. 2012. Vol. 22. P. 4032-4039.

63. Choi W., Harada D., Oyaizu K., Nishide H. Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-Active Materials in High-Density and Rechargeable Polymer/Air Batteries // J. Am. Chem. Soc. 2011. Vol. 133. P. 19839-19843.

64. Nokami T., Matsuo T., Inatomi Y., Hojo N., Tsukagoshi T., Yoshizawa H., Shimizu A., Kuramoto H., Komae K., Tsuyama H., Yoshida J.-i. Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity // J. Am. Chem. Soc. 2012. Vol. 134. P. 19694-19700.

65. Song Z., Zhan H., Zhou Y. Polyimides: Promising Energy-Storage Materials // Angew. Chem., Int. Ed. 2010. Vol. 49. P. 8444-8448.

66. Song Z., Xu T., Gordin M.L., Jiang Y.-B., Bae I.-T., Xiao Q., Zhan H., Liu J., Wang D. Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries // Nano Lett. 2012. Vol. 12. P. 2205−2211.

67. Liu K., Zheng J., Zhong G., Yang Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries // J. Mater. Chem. 2011. Vol. 21. P. 4125–4131.

68. Sharma P., Damien D., Nagarajan K., Manikoth M. Shaijumon M.M., Hariharan M. Perylene-polyimide-Based Organic Electrode Materials for Rechargeable Lithium Batteries // J. Phys. Chem. Lett. 2013. Vol. 4. P. 3192−3197.

69. Zhao L., Wang W., Wang A., Yuan K., Chen S., Yang Y. A novel polyquinone cathode material for rechargeable lithium batteries // Journal of Power Sources. 2013. Vol. 233. P. 23-27.

70. Ярмоленко О.В., Игнатова А.А., Мумятов А.В., Трошин П.А., Шестаков А.Ф. Структурные изменения полиимидных органических катодных материалов при допировании литием. Тезисы на VII Всероссийскую молодежную школу-конференцию «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». 14-17 апреля 2015 г. Иваново. C. 389-392. (Yarmolenko O.V., Ignatov A.A., Mumyatov A.V., Troshin P.A., Shestakov A.F. Structural changespolyimide organic cathode materials when doped with lithium // Abstracts for the VII National Youth School-Conference "Quantum chemical calculations: The structure and reactivity of organic and inorganic molecules." 14-17 April 2015 Ivanovo. P. 389-392.)

71. http://lomonosov-msu.ru/archive/Lomonosov_2015/data/section_32_7117.htm.

72. Forrest S.R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques // Chem. Rev. 1997. Vol. 97. P. 1793-1896.

73. Sylvester-Hvid K.O. Two-Dimensional Simulations of CuPc−PCTDA Solar Cells: The Importance of Mobility and Molecular π Stacking // J. Phys. Chem. B 2006. Vol. 110. P. 2618-2627.

74. Crecelius G., Fink J., Ritsko J.J., Stamm M., Freund H.-J., Gonska H. π-electron delocalization in poly(p−phenylene), poly(p−phenylenesulfide), and poly(p−phenyleneoxide) // Phys. Rev. B: Condens. Matter Mater. Phys. 1983. Vol. 28. P. 1802-1808.

75. MacDiarmid A.G., in Conjugated Polymers and Related Materials (Eds: W.R. Salaneck, I. Lundström, B. Ranby), Oxford University Press, Oxford, 1993. pp. XV + 501.

76. Wu H., Wang K., Meng Y., Lua K., Wei Z. An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries // J. Mater. Chem. A. 2013. Vol. 1. P. 6366–6372.

77. Chung S.-Y., Bloking J.T., Chiang Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes // Nat. Mater. 2002. Vol. 1. P. 123-128.

78. Wang D., Choi D., Li J., Yang Z., Nie Z., Kou R., Hu D., Wang C., Saraf L. V., Zhang J., Aksay I.A., Liu J. Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion // ACS Nano. 2009. Vol. 3. P. 907−914.

79. Kozhemyakina N.V., Englert J.M., Yang G., Spiecker E., Schmidt C.D., Hauke F., Hirsch A. Non-Covalent Chemistry of Graphene: Electronic Communication with Dendronized Perylene Bisimides // Adv. Mater. 2010. Vol. 22. P. 5483−5487.

80. Xiang J., Chang C., Li M., Wu S., Yuan L., Sun J. A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery // Cryst. Growth Des. 2008. Vol. 8. № 1. P. 280-282.

81. Chen H., Armand M., Demailly G., Dolhem F., Poizot P., Tarascon J.M. From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries // ChemSusChem. 2008. Vol. 1. P. 348-355.

82. Chen H., Armand M., Courty M., Jiang M., Grey C. P., Dolhem F., Tarascon J.-M., Poizot P. Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery // J. Am. Chem. Soc. 2009. Vol. 131. P. 8984-8988.

83. Zeng R.-H., Li X.-P., Qiu Y.-C., Li W.-S., Yi J., Lu D.-S., Tan C.-L., Xu M.-Q. Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for lithium ion batteries // Electrochem. Commun. 2010. Vol. 12. P. 1253-1256.

84. Renault S., Brandell D., Gustafsson T., Edstrom K. Improving the electrochemical performance of organic Li-ion battery electrodes // Chem. Commun. 2013. Vol. 49. P. 1945-1947.

85. Armand M., Grugeon S., Vezin H., Laruelle S., Ribiere P., Poizot P., Tarascon J.-M. Conjugated dicarboxylate anodes for Li-ion batteries // Nat. Mater. 2009. Vol. 8. P. 120-125.

86. Zhang Y.Y., Sun Y.Y., Du S.X., Gao H.-J., Zhang S.B. Organic salts as super-high rate capability materials for lithium-ion batteries // Applied physics letters. 2012. Vol. 100, 091905; doi: 10.1063/1.3689764.

87. Walker W., Grugeon S., Vezin H., Laruelle S., Armand M., Wudl F., Tarascon J.-M. Electrochemical characterization of lithium 4,4′-tolane-dicarboxylate for use as a negative electrode in Li-ion batteries // J. Mater. Chem. 2011. Vol. 21. P. 1615-1620.

88. Walker W., Grugeon S., Mentre O., Laruelle S., Tarascon J.-M., Wudl F. Ethoxycarbonyl-Based Organic Electrode for Li-Batteries // J. Am. Chem. Soc. 2010. Vol. 132. P. 6517-6523.

89. Zhao R.R., Cao Y.L., Ai X.P., Yang H.X. Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries // Journal of Electroanalytical Chemistry. 2013. Vol. 688. P. 93-97.

90. Renault S., Geng J., Dolhem F., Poizot P. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of pyromellitic diimide dilithium salt // Chem. Commun. 2011. Vol. 47. P. 2414-2416.

91. Kim D.J., Je S.H., Sampath S., Choi J.W., Coskun A. Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries // RSC Adv. 2012. Vol. 2. P. 7968-7970.

92. Zhao L., Zhao J., Hu Y.-S., Li H., Zhou Z., Armand M., Chen L. Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery // Adv. Energy Mater. 2012. Vol. 2. P. 962-965.

93. Park Y., Shin D.-S., Woo S.H., Choi N.S., Shin K.H., Oh S.M., Lee K.T. and Hong S.Y. Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries // Adv. Mater. 2012. Vol. 24. P. 3562-3567.

94. Abouimrane A., Weng W., Eltayeb H., Cui Y., Niklas J., Poluektov O., Amine K. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells // Energy Environ. Sci. 2012. Vol. 5. P. 9632-9638.

95. Gottis S., Barrès A.-L., Dolhem F., Poizot P. Voltage Gain in Lithiated Enolate-Based Organic Cathode Materials by Isomeric Effect // ACS Appl. Mater. Interfaces. 2014. Vol. 6, No. 14. P. 10870–10876.


Для цитирования:


Игнатова А.А., Ярмоленко О.В. ПЕРСПЕКТИВНЫЕ ОРГАНИЧЕСКИЕ КАТОДНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СОПРЯЖЕННЫХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ ДЛЯ ЛИТИЕВЫХ АККУМУЛЯТОРОВ. Альтернативная энергетика и экология (ISJAEE). 2015;(8-9):112-138. https://doi.org/10.15518/isjaee.2015.08-09.014

For citation:


Ignatova A.A., Yarmolenko O.V. PERSPECTIVE ORGANIC CATHODE MATERIALS BASED ON CONJUGATED CARBONYL COMPOUNDS FOR LITHIUM BATTERIES. Alternative Energy and Ecology (ISJAEE). 2015;(8-9):112-138. (In Russ.) https://doi.org/10.15518/isjaee.2015.08-09.014

Просмотров: 284


ISSN 1608-8298 (Print)