Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

History review on cubic boron nitride, intended for edge cutting tool (part 1)

Abstract

The paper presents historical materials on edge cutting tools design, based on cubic boron nitride, and describes modern state of local cutting superhard materials production. Parameters of hexagonal boron nitride conversion into cubic form are considered, and it is shown that gas-phase transport reactions with hydrogen play the main role. The author note likeness between processes of graphite gas-phase synthesis and hexagonal boron nitride, and also obtaining diamond and cubic boron nitride; though diamond synthesis has been performed both from methane and indirectly from graphite. It is shown that there is a similar scheme for the cubic boron nitride. In spite of the fact that today we have only indirect process of cubic structure synthesis from hexagonal modification in a high-pressure device, it does mot mean that it is impossible to obtain diamond-like boron nitride directly from gaseous compositions of boron and nitrogen. The paper presents positive investigation results on the cubic boron nitride synthesis in conditions excluding any pressure on initial burden of hexagonal boron nitride and catalyst metal. Estimated conditions of gasphase synthesis of the cubic boron nitride from boron and nitrogen compound at normal pressure are proposed and description of the device for the process realization is presented. Conditions of microwave heating that are similar to ones for diamond synthesis from methane should be created to obtain gas-phase synthesis of the cubic boron nitride without high pressures; i.e. it is necessary to increase supplied specific power and find experimentally optimum concentration of initial gaseous substances, containing boron and nitrogen, to obtain the cubic boron nitride.

About the Author

S. V. Digonsky
«VNIIALMAZ»
Russian Federation


References

1. Wentorf R.H. Cubic Form of Boron Nitride // The Journal of Chemical Physics. 1957. Vol. 26, No. 4. P. 956.

2. Wentorf R.H. Abrasive Material and Preparation Thereof. US Patent No 2947617, Aug. 02, 1960. Filed Jan. 06, 1958.

3. Wentorf R.H. Synthesis of the Cubic form of Boron Nitride // The Journal of Chemical Physics. 1961. Vol. 34, No. 3. P. 809-812.

4. Bundy F.P., Wentorf R.H. Direct Transformation of Hexagonal Boron Nitride to Denser Forms // The Journal of Chemical Physics. 1963. Vol. 38, №. 5. P. 1144.

5. Wentorf R.H. Growth of Large Cubic Form of Boron Nitride. US Patent No 3192015, June 29, 1965. Filed Apr. 01, 1963.

6. Wentorf R.H. Process for Making Cubic Crystal Boron Nitride. US Patent No 3150929, Sept. 29, 1964. Filed Jan. 17, 1963.

7. Wentorf R.H., Rocco W.A. Verfahren zur Herstellung von kubischen Bornitrid. Deutsches Patentamt, Offenlegungsschrift 2232225, 11.06.1973.

8. Wentorf R.H., De Lai A.J. Cubic Boron Nitride Compact and Method for its Production. US Patent No 3233988, Feb. 08, 1966. Filed May 19, 1964.

9. Wentorf R.H., Rocco W.A. Cubic Boron Nitride Sintered Carbide Abrasive Bodies. US Patent No 3767371, Oct. 23, 1973. Filed July 01, 1971.

10. Birle J.D., Wentorf R.H., Rocco W.A. Abrasive Boron Nitride Particles Containing Phosphorus. US Patent No 3881890, May 06, 1975. Filed Apr. 20, 1973.

11. De Vries R.C., Hills B., Fleischer J.F. Continuous Growth of Cubic Boron Nitride. US Patent No 3772428, Nov. 13, 1973. Filed Jan. 28, 1971.

12. De Vries R.C., Hills B., Fleischer J.F. Cubic Boron Nitride Preparation from Lithium-Boron-Nitrogen Mixtures. US Patent No 3701826, Oct. 31, 1972. Filed Jan. 28, 1971.

13. De Vries R.C., Fleischer J.F. Phase Equilibria Pertinent to the Growth of Cubic Boron Nitride // Journal of Crystal Growth. 1972. No. 13/14. P. 88-92.

14. Corrigan F.R., Bundy F.P. Directs Transitions Among the Allotropic Forms of Boron Nitride at High Pressures and Temperatures // The Journal of Chemical Physics. 1975. Vol. 63, No. 9. P. 3812.

15. Шарупин Б.Н. Структура и свойства пиронитрида бора. В сб. Химическое газофазное осаждение тугоплавких неорганических материалов. Л.: ГИПХ, 1976. С. 66-101.

16. Порада А.Н., Гасик М.И. Электротермия неорганических материалов. М.: Металлургия, 1990.

17. Дигонский В.В. (научный руководитель темы), Фельдгун Л.И., Сохор М.И., Фарафонтов В.И., Блинков В.А., Андрощук А.Ф., Вильк Ю.Н., Никитина Т.П., Орданьян С.С., Ткаченко Н.Н. Совершенствование технологических процессов получения композитных материалов на основе нитрида бора методами синтеза и спекания. Отчет ВНИИАШ по теме: 9-76 (1977).

18. Лысанов В.С., Букин В.А., Глаговский Б.А., Боровский Г.В., Ипполитов Г.М., Каменкович А.С., Кремень З.И., Попов С.А., Филоненко Н.Е. Эльбор в машиностроении. Л.: Машиностроение, 1978.

19. Bradley R.S., Munro D.C., Whitefild M. The Reactivity and Polymorphism of Selected Nitrides at High Temperatures and High Pressures // Journ. Inorg. Nucl. Chem. 1966. Vol. 28. P. 1803-1812.

20. Saito H., Ushio M., Hagao S. Synthesis of Cubic Boron Nitride // Yogyo-Kyokai Shi. 1969. Vol. 78, No. 893. P. 7.


Review

For citations:


Digonsky S.V. History review on cubic boron nitride, intended for edge cutting tool (part 1). Alternative Energy and Ecology (ISJAEE). 2014;(9):46-54. (In Russ.)

Views: 394


ISSN 1608-8298 (Print)