Preview

Альтернативная энергетика и экология (ISJAEE)

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

О некоторых теоретических и экспериментальных (STM, STS, HREELS/LEED, PES, ARPS, Raman spectroscopy) данных по сорбции водорода графеновыми наноматериалами в связи с проблемами чистой энергетики

Аннотация

Представлены результаты термодинамического анализа ряда теоретических и экспериментальных (TDS, STM, STS, HREELS/LEED, PES, ARPS, Raman spectroscopy и др.) данных по «обратимому» гидрированию и дегидрированию некоторых графеновых (моно- и полислойных) наноструктур. В рамках приближения формальной кинетики для реакций первого порядка определены термодинамические характеристики процессов сорбции водорода этими наноструктурами (константы скорости, энергии активации, предэкспоненциальные факторы констант скорости). При интерпретации полученных термодинамических характеристик использованы некоторые модели и характеристики химической сорбции водорода на базальной и краевых поверхностях графита с целью раскрытия атомных механизмов гидрирования и дегидрированию различных графеновых (моно- и полислойных) наноструктур. Рассмотрена кинетика как сорбционных процессов, в которых не лимитирует диффузионный массоперенос водорода в сорбенте, так и процессов с лимитирующей диффузионной стадией. Рассматриваются также некоторые «открытые вопросы» и перспективы решения актуальной проблемы эффективного хранения водорода «на борту» экоавтомобиля и ряда других проблем чистой энергетики на основе использования графитовых нановолокон.

Об авторе

Ю. С. Нечаев
ЦНИИчермет им. И.П. Бардина; Институт металловедения и физики металлов им. Г.В. Курдюмова
Россия


Список литературы

1. Geim A.K., Novoselov K.S. The rise of graphene // Nature Materials. 2007. Vol. 6, No. 3. P. 183-191.

2. Palerno V. Not a molecule, not a polymer, not a substrate.. the many faces of graphene as a chemical platform // Chemical Communications. 2013. Vol. 49, No. 28. P. 2848-2857.

3. Sofo J.O., Chaudhari A.S. and Barber G.D. Graphane: A two-dimensional hydrocarbon // Phys. Rev. B. 2007. Vol. 75. P. 153401-1-4.

4. Openov L.A. and Podlivaev A.I. Thermal desorption of hydrogen from graphane // Technical Physics Letters. 2010. Vol. 36, No. 1. P. 31-33.

5. Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K. and Novoselov K.S. Control of graphene’s properties by reversible hydrogenation: evidence for graphan // Science. 2009. Vol. 323 (5914). P. 610-626.

6. Openov L.A. and Podlivaev A.I. Thermal stability of single-side hydrogenated grapheme // Technical Physics. 2012. Vol. 57, No. 11. P. 1603-1605.

7. Pujari B.S., Gusarov S., Brett M. and Kovalenko A. Single-side-hydrogenated graphene: Density functional theory predictions // Physical Review B. 2011. Vol. 84. P. 041402-1-6.

8. Xiang H.J., Kan E.J., Wei S.-H., Gong X.G. and Whangbo M.-H. Thermodynamically stable single-side hydrogenated grapheme // Physical Review B. 2010. Vol. 82. P. 165425-1-4.

9. Podlivaev A.I. and Openov L.A. On thermal stability of graphone // Semiconductors. 2011. Vol. 45, No. 7. P. 958-961.

10. Nikitin A., Li X., Zhang Z., Ogasawara H., Dai H. and Nilsson A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds // Nano Lett. 2008. Vol. 8, No. 1. P. 162-167.

11. Nikitin A., Näslund L.-A., Zhang Z. and Nillson A. C.-H. bond formation at the graphite surface studied with core level spectroscopy // Surface Science. 2008. Vol. 602, No. 14. P. 2575-2580.

12. Bauschlicher C.W. (Jr.) and So C.R. High coverages of hydrogen on (10.0), (9.0) and (5.5) carbon nanotubes // Nano Lett. 2002. Vol. 2, No. 4. P. 337-341.

13. Pimenova S.M., Melkhanova S.V., Kolesov V.P. and Lobach A.S. The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36 // J. Phys. Chem. B. 2002. Vol. 106, No. 9. P. 2127-2130.

14. Nechaev Yu.S. Carbon nanomaterials, relevance to the hydrogen storage problem // J. Nano Res. 2010. Vol. 12. P. 1-44.

15. Waqar Z. Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption // J. Mater. Sci. 2007. Vol. 42, No. 4. P. 1169-1176.

16. Nechaev Yu.S., Nejat Veziroglu T. Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem // Advances in Materials Physics and Chemistry. 2013. Vol. 3. P. 255-280.

17. Watcharinyanon S., Virojanadara C., Osiecki J.R., Zakharov A.A., Yakimova R., Uhrberg R.I.G. and Johansson L.I. Hydrogen intercalation of graphene grown on 6H-SiC(0001) // Surface Science. 2011. Vol. 605, No. 17-18. P. 1662-1668.

18. Han S.S., Jung H., Jung D.H., Choi S.-H. and Park N. Stability of hydrogenation states of graphene and conditions for hydrogen spillover // Phys. Rev. B -Condens. Matter. Mater. Phys. 2012. Vol. 85, No. 15. article # 155408.

19. Akiba E. Hydrogen related R & D and hydrogen storage materials in Japan. In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/uk-shec/showcase/Showcase Presentations.html.

20. Nechaev Yu.S. On thermodynamic characteristics of hydrogenated graphene-based nanostructures, relevance to the problem of the hydrogen on-board storage in fuel-cell-powered ecological vehicles // Intern. Sc. J. for Alternative Energy and Ecology - ISJAEE. 2014. No. 10 (150). P. 25-55.

21. Nechaev Yu.S., Nejat Veziroglu T. On thermodynamic stability of hydrogenated graphene layers, relevance to the hydrogen on-board storage // The Open Fuel Cells Journal. 2013. Vol. 6. P. 21-39.

22. Xiang H., Kan E., Wei S.-H., Whangbo M.-H. and Yang J. “Narrow” graphene nanoribbons made easier by partial hydrogenation // Nano Lett. 2009. Vol. 9, No. 12. P. 4025-4030.

23. Lebegue S., Klintenberg M., Eriksson O. and Katsnelson M.I. Accurate electronic band gap of pure and functionalized graphane from GW calculations // Phys. Rev. B - Condensed Matt. Mat. Phys. 2009. Vol. 79, No. 24. article # 245117.

24. Zhou J., Wang Q., Sun Q., Chen X.S., Kawazoe Y. and Jena P. Ferromagnetism in semihydrogenated graphene sheet // Nano Letters. 2009. Vol. 9, No. 11. P. 3867-3870.

25. Dzhurakhalov A.A. and Peeters F.M. Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane // Carbon. 2011. Vol. 49. P. 3258-3266.

26. Ruffieux P., Gröning O., Bielmann M., Mauron P., Schlapbach L. and Gröning P. Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature // Phys. Rev. B. 2002. Vol. 66. P. 245416-1-8.

27. Sha X. and Jackson B. First-principles study of the structural and energetic properties of H atoms on graphite (0001) surface // Surf. Sci. 2002. Vol. 496. P. 318-330.

28. Sluiter M.H.F. and Kawazoe Y. Cluster expansion method for adsorption: application to hydrogen chemisorption on grapheme // Phys. Rev. B. 2003. Vol. 68. P. 085410-1-7.

29. Yazyev O.V. and Helm L. Defect-induced magnetism in grapheme // Phys. Rev. B. 2007. Vol. 75. P. 125408-1-5.

30. Lehtinen P.O., Foster A.S., Ma Y., Krasheninnikov A.V. and Nieminen R.M. Irradiation-induced magnetism in graphite: a density functional study // Phys. Rev. Lett. 2004. Vol. 93. P. 187202-1-4.

31. Boukhvalov D.W., Katsnelson M.I. and Lichtenstein A.I. Hydrogen on graphene: total energy, structural distortions and magnetism from first-principles calculations // Phys. Rev. B. 2008. Vol. 77. P. 035427-1-7.

32. Jiang D., Cooper V.R. and Dai S. Porous graphene as the ultimate membrane for gas separation // Nano Lett. 2009. Vol. 9. P. 4019-4024.

33. Brito W.H., Kagimura R. and Miwa R.H. Hydrogenated grain boundaries in graphene // Applied Physics Letters. 2011. Vol. 98, No. 21. Article # 213107.

34. Zhang T., Li X., Gao H. Defects controlled wrinkling and topological design in grapheme // Journal of the Mechanics and Physics of Solids, Applied Physics Letters. 2014. Vol. 67. P. 2-13.

35. Banhart F., Kotakoski J. and Krasheninnikov A.V. Structural defects in graphene (Review) // ACS Nano. 2011. Vol. 5, No. 1. P. 26-41.

36. Yazyev O.V. and Louie S.G. Topological defects in graphene: Dislocations and grain boundaries // Physical Review B - Condensed Matter and Materials Physics. 2010. Vol. 81, No. 19. Article # 195420.

37. Kim K., Lee Z., Regan W., Kisielowski C., Crommie M.F. and Zettl A. Grain boundary mapping in polycrystalline grapheme // ACS Nano. 2011. Vol. 5, No. 3. P. 2142-2146.

38. Koepke J.C., Wood J.D., Estrada D., Ong Z.-Y., He K.T., Pop E., Lyding J.W. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study // ACS Nano. 2013. Vol. 7, No. 1. P. 75-86.

39. Zhang J., Zhao J. Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries // Carbon. 2013. Vol. 55. P. 151-159.

40. Yakobson B.I., Ding F. Observational geology of graphene, at the nanoscale (Review) // ACS Nano. 2011. Vol. 5, No. 3. P. 1569-1574.

41. Cockayne E., Rutter G.M., Guisinger N.P., Crain J.N., First P.N., Stroscio J.A. Grain boundary loops in grapheme // Physical Review B - Condensed Matter and Materials Physics. 2011. Vol. 83, No. 19. Article # 195425.

42. Zhang J., Zhao J. and Lu J. Intrinsic strength and failure behaviours of graphene grain boundaries // ACS Nano. 2012. Vol. 6, No. 3. P. 2704-2711.

43. Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy // Nano Letters. 2012. Vol. 12, No. 8. P. 3925-3930.

44. Sessi P., Guest J.R., Bode M. and Guisinger N.P. Patterning graphene at the nanometer scale via hydrogen desorption // Nano Letters. 2009. Vol. 9, No. 12. P. 4343-4347.

45. Karapet’yants M.K. and Karapet’yants M.L. Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv” (“Fundamental thermodynamic constants of inorganic and organic substances”). Moscow: Khimiya, 1968 (in Russian).

46. Bazarov I.P. Thermodynamics. Moscow: Vysshaya Shkola, 1976 (in Russian).

47. Xie L., Wang X., Lu J., Ni Z., Luo Z., Mao H., Wang R., Wang Y., Huang H., Qi D., Liu R., Yu T., Shen Z., Wu T., Peng H., Oezyilmaz B., Loh K., Wee A.T.S., Ariando S., Chen W. Room temperature ferromagnetism in partially hydrogenated epitaxial grapheme // Applied Physics Letters. 2011. Vol. 98, No. 19. Article # 193113.

48. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme // Science. 2008. Vol. 321 (5887). P. 385-388.

49. Pinto H.P., Leszczynski J. Fundamental properties of grapheme. In: Handbook of Carbon Nano Materials, Vol. 5 (Graphene - Fundamental Properties), Eds. F. D’Souza, K.M. Kadish, Word Scientific Publishing Co, New Jersey et al., 2014. P. 1-38.

50. Yang F.H. and Yang R.T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes // Carbon. 2002. Vol. 40. P. 437-444.

51. Wojtaszek M., Tombros N., Garreta A., Van Loosdrecht P.H.M., Van Wees B.J. A road to hydrogenating graphene by a reactive ion etching plasma // J. Appl. Phys. 2011. Vol. 110, No. 6. article # 063715.

52. Castellanos-Gomez A., Wojtaszek M., Arramel, Tombros N., Van Wees B.J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy // Small. 2012. Vol. 8, No. 10. P. 1607-1613.

53. Castellanos-Gomez A., Arramel, Wojtaszek M., Smit R.H.M., Tombros N., Agraït N., Van Wees B.J. and Rubio-Bollinger G. Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping // Boletin Grupo Espanol Carbon. 2012. Vol. 25. P. 18-22.

54. Castellanos-Gomez A., Smit R.H.M., Agraït N. and Rubio-Bollinger G. Spatially resolved electronic inhomogeneities of graphene due to subsurface charges // Carbon. 2012. Vol. 50, No. 3. P. 932-938.

55. Bocquet F.C., Bisson R., Themlin J.-M., Layet J.-M., Angot T. Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001) // Physical Review B - Condensed Matter and Materials Physics. 2012. Vol. 85, No. 20. article # 201401.

56. Luo Z., Yu T., Kim K.-J., Ni Z., You Y., Lim S., Shen Z., Wang S., Lin J. Thickness-dependent reversible hydrogenation of graphene layers // ACS Nano. 2009. Vol. 3, No. 7. P. 1781-1788.

57. Hornekaer L., Sljivancanin Z., Xu W., Otero R., Rauls E., Stensgaard I., Lægsgaard E., Hammer B., Besenbacher F. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface // Phys. Rev. Lett. 2006. Vol. 96. article # 156104.

58. Balog R., Jorgensen B., Wells J., Lægsgaard E., Hofmann P., Besenbacher F. and Hornekær L. Atomic hydrogen adsorbate structures on graphene // J. Am. Chem. Soc. 2009. Vol. 131, No. 25. P. 8744-8745.

59. Waqar Z., Klusek Z., Denisov E., Kompaniets T., Makarenko I., Titkov A. and Saleem A. Effect of atomic hydrogen sorption and desorption on topography and electronic properties of pyrolytic graphite // Electrochemical Society Proceedings. 2000. Vol. 16. P. 254-265.

60. Trunin R.F., Urlin V.D. and Medvedev A.B. Dynamic compression of hydrogen isotopes at megabar pressures // Phys. Usp. 2010. vol. 53. p. 605-622.

61. Gupta B.K., Tiwari R.S. and Srivastava O.N. Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene // J. Alloys Compd. 2004. Vol. 381. P. 301-308.

62. Park C., Anderson P.E., Chambers A., Tan C.D., Hidalgo R. and Rodriguez N.M. Further studies of the interaction of hydrogen with graphite nanofibers // J. Phys. Chem. B. 1999. Vol. 103. P. 10572-10581.

63. Sheka E.F., Popova N.A. Odd-electron molecular theory of the graphene hydrogenation // J. Mol. Mod. 2012. Vol. 18. P. 3751-3768.

64. Davydov S.Yu., Lebedev A.A. Epitaxial singlelayer graphene on the SiC substrate // Material Science Forum. 2012. Vols. 717-720. P. 645-648.

65. Khusnutdinov N.R. The thermal Casimir-Polder interaction of an atom with a spherical plasma shell // J. Phys. A: Math. Theor. 2012. Vol. 45. P. 265-301 [arXiv:1203.2732].

66. Chernozatonskii L.A., Mavrin B.N., Sorokin P.B. Determination of ultrathin diamond films by Raman spectroscopy // Physica Status Solidi B. 2012. Vol. 249, No. 8. P. 1550-1554.

67. Data J., Ray N.R., Sen P., Biswas H.S., Wogler E.A. Structure of hydrogenated diamond-like carbon by Micro-Raman spectroscopy // Materials Letters. 2012. Vol. 71. P. 131-133.

68. Zhao X., Outlaw R.A., Wang J.J., Zhu M.Y., Smith G.D., Holloway B.C. Thermal desorption of hydrogen from carbon nanosheets // The Journal of Chemical Physics. 2006. Vol. 124. P. 194704-1-6.

69. Stolyarova E., Stolyarov D., Bolotin K., Ryu S., Liu L., Rim K.T., Klima M., Hybrtsen M., Pogorelsky I., Pavlishin I., Kusche K., Hone J., Kim P., Stormer H.L., Yakimenko V., Flynn G. Observation of graphene bubbles and effective mass transport under graphene films // Nano Lett. 2009. Vol. 9, Iss. 1. P. 332-337.

70. Riedel C., Coletti C., Iwasaki T., Zakharov A.A., Starke U. Quazi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation // Phys. Rev. Lett. 2009. Vol. 103. P. 246804-1-4.

71. Riedel C., Coletti C., Iwasaki T., Starke U. Hydrogen intercalation below epitaxial graphene on SiC(0001) // Materials Science Forum. 2010. Vols. 645648. P. 623-628.

72. Goler S., Coletti C., Piazza V., Pingue P., Colangelo F., Pallegrini V., Emtsev K.V., Forti S., Starke U., Beltram F., Heun S. Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial grapheme // Carbon. 2013. Vol. 51, Iss. 1. P. 249-254.

73. Jones J.D., Morris C.F., Verbeck G.F., Perez J.M. Oxidative pit formation in pristin, hydrogenated and dehydrogenated grapheme // Appl. Surface Science. 2012. Vol. 10, P. 1-11.

74. Lee M.J., Choi J.S., Kim J.-S., Byun I.-S., lee D.H., Ryu S., Lee C., Park B.H. Characteristics and effects of diffused water between graphene and a SiO2 substrste // Nano Res. 2012. Vol. 5, Iss. 10. P. 710-717.


Рецензия

Для цитирования:


Нечаев Ю.С. О некоторых теоретических и экспериментальных (STM, STS, HREELS/LEED, PES, ARPS, Raman spectroscopy) данных по сорбции водорода графеновыми наноматериалами в связи с проблемами чистой энергетики. Альтернативная энергетика и экология (ISJAEE). 2014;(17):33-56.

For citation:


Nechaev Yu.S. On some theoretical and experimental (STM, STS, HREELS/LEED, PES, ARPS & Raman spectroscopy) data on hydrogen sorption with graphene-layers nanomaterials, relevance to the clean energy applications. Alternative Energy and Ecology (ISJAEE). 2014;(17):33-56. (In Russ.)

Просмотров: 248


ISSN 1608-8298 (Print)