Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search

ELECTROCHEMICAL PROPERTIES OF P-TOLUENESULPHONIC ACID-DOPED POLYANILINE FILMS IN Li APROTIC ELECTROLYTE

https://doi.org/10.15518/isjaee.2015.13-14.014

Abstract

The method for preparation of the electrode material based on polyaniline (PAni) doped by p-toluenesulfonic acid (PTSA) has been developed. PAni-(PTSA)0.5  was prepared by mixing solutions of emeraldine base (EB) and PTSA in formic acid at a 1 mol of PTSA to 2 monomer units ratio in the polyaniline chain. Electrochemical properties of the PAni-PTSA film casted onto a Ni support have been studied using cyclic voltammetry (CVA) and charge-discharge curves in 1М LiClO4 in propylene carbonate. It has been shown that the insertion of PTSA provides quickly attained steady state of CVA and enhances noticeably capacity of the PAni-PTSA electrode in aprotic Li electrolyte. If charge-discharge current is increased from 1 A/g to 10 A/g, capacity changes insignificantly from 260 F/g to 244 F/g, respectively. The effect of PTSA embedded in PAni as dopant at a stage of the formation of a polymer matrix on morphology, crystallinity, and conductivity of PAni-(PTSA)0.5 was studied by IR spectroscopy, X-ray analysis, and scanning electron microscopy. 

About the Authors

L. I. Tkachenko
Institute of Problems of Chemical Physics RAS
Russian Federation
PhD, senior researcher, IPCP RAS


G. V. Nikolaeva
Institute of Problems of Chemical Physics RAS
Russian Federation


N. N. Dremova
Institute of Problems of Chemical Physics RAS
Russian Federation


O. N. Efimov
Institute of Problems of Chemical Physics RAS
Russian Federation
PhD, leading researcher, IPCP RAS


References

1. Chiang J.-C. and MacDiarmid A.G. Polyaniline: protonic acid doping of the emeraldine form to the metallic regime // Synthetic Metals. 1986. Vol. 13, № 1–3. P. 193–205.

2. Kong J., Franklin N.R., Zhou C.W. Nanotube molecular wires as chemical sensors // Science. 2000. Vol. 287, № 5453. P. 622–625.

3. Marcel C., Tarascon J.-M. An all-plastic WO3 H2O/polyaniline electrochromic device // Solid State Ionics. 2001. Vol. 43 (1). Р. 89–101.

4. Zhou Y., Qin Z.-Y., Li L. Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials // Electrochimica Ac-ta. 2010. Vol. 55, № 12, P. 3904–3908.

5. Li J., Xie H.Q., Li Y., Liu J., Li Z.X. Electrochemical properties of graphene nanosheets/ polyaniline nanofibers composites as electrode for supercapacitors // J. Power Sources. 2011. Vol. 196, Iss. 24. P. 10775-10781.

6. Yan J., Wei T., Fan Z.J., Qian W.Z., Zhang M.L., Shen X.D., Wei F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors // J. Power Sources. 2010. Vol. 195, Iss. 9. P. 3041-1401.

7. Liu S., Liu X.H., Li Z.P., Yang S.R., Wang J.Q. Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors // New J. of Chem. 2011. Vol. 35, Iss. 2. P. 369-374.

8. Gomez H., Ram MK., Alvi F., Villalba P., Stefanakos E., Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors // J. Power Sources. 2011. Vol. 196, Iss. 8. P. 4102-4108.

9. Syed A.A. and Dinesan M.K. Poly(aniline): a conducting polymer as a novel anion-exchange resin // Analyst. 1992. Vol. 117. P. 61-66.

10. Endo Nobutaka, Takeda Yukari, Higa Mitsuri, Matsusaki Koji. Ion-exchange properties of colloidal particle consisting of polyaniline and poly(vinilalcohol) fixed on silica-gel powder // Analytical sciences. 2003. Vol. 19. P. 721-725.

11. Raudsepp T., Marand M. i, Tamm T., Sammelselg V., Tamm Ju. Study of the factors determing the mobility of ions in the polypyrrole films doped with aromatic sulfonate anions // Electrochimica Acta. 2008. Vol. 53. P. 3828–3835.

12. Raudsepp T., Marandi M., Tamm T., Sammelselg V., Tamm Ju. Influence of ion-exchange on the electrochemical properties of polypyrrole films // Electro-chimica Acta. 2014. Vol. 122. P. 79–86.

13. Osterholm J.E., Cao Y., Klavetter F. Emulsion polymerization of aniline // Polymer. 1994. Vol. 35. P. 2902.

14. Levon K., Ho K.H., Zheng W.Y., Laakso J., Kama T., Taka T. and Osterhoim J.E. Thermal doping of polyani-line with dodecylbenzene sulfonic acid without auxiliary solvent // Polymer. 1995. Vol. 36, Iss. 14. P. 2733.

15. Zhang Zhiming, Wei Zhixiang, Zhang Lijuan, Wan Meixiang. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids // Acta Materialia. 2005. Vol. 53. P. 1373–1379.

16. Khalid M., Tumelero M.A., Brandt Ju.S., Zoldan

17. V.C., Acuña J.J. S., Pasa A.A. Electrical Conductivity Studies of Polyaniline Nanotubes Doped with Different Sulfonic Acids // Indian Journal of Materials Science. 2013. Article ID 718304.

18. Khalid M., Acuna J.J.S., Tumelero M.A., Fischer J.A., Zoldan V., Pasa A.A. Sulfonated porphyrin doped polyaniline nanotubes and nanofibers: synthesis and characterization // J. of Materials Chemistry. 2012. Vol. 22. P. 11340–11346.

19. Gribkova L.O., Ivanov V.F., Nekrasov A.A., Vo-rob’ev S.A., Omelchenko O.D., Vannikov A.V. Dominating influence of rigid-backbone polyacid matrix during electropolymerization of aniline in the presence of mixtures of poly(sulfonic acids) // Electrochimica Acta. 2011. Vol. 56, No. 10. P. 3460-3467.

20. Skotheim T.A., Elsenbaumer R.L., Reinolds J.R. Handbook of conducting polymer. N. Y.: Marcel Dekker, 1997. 11.

21. Zhou Y.-k., He B.-l., Zhou W.-j., Huang J., Li X.-h., Wu B., Li H.-l. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites // Electrochimica Acta. 2004. Vol. 49. P. 257–262.

22. Pouget J.P., Jozefowicz M.E., Epstein A., Tang J., X., and MacDiarmid A.G. X-ray structure of polyani-line // Macromolecules. 1991. Vol. 24, No. 3, P. 779– 789.

23. Tang J.S., Jin X.B., Wang B.C., Wang F.S. Infrared spectra of soluble polyaniline // Synth. Met. 1988. Vol. 24. P. 231-238.

24. Baibarac M., Baltog I., Lefrant S., Mevellec J.Y., Chauvet O. Polyaniline and carbon nabotubes based composites containing whole units and fragments of nanotubes // Chem. Mater. 2003. Vol. 15, No. 21. P. 4149-4156.

25. Saravanan S., Mathai C.J., Anantharaman M.R., Venkachalam S., Prabhakaran P.V. Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid // J. of Physics and Chemistry of Solids. 2006. Vol. 67. P. 1496-1501.

26. Hakansson E., Lin T., Wang H., Kaynak A. The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole // Synthetic Metals. 2006. Vol. 156. № 18-20. P. 1194.

27. Morita M. Multicolor electrochromic behavior of polyaniline composite films combined with tungsten trioxide // Macromol. Chem. Phys. 1994. Vol. 195. № 2. P. 609-620.

28. Panero S., Passerini S., Scrosati B. Conducting polymers: new electrochromic materials for advanced optical devices // Mol. Cryst. Liq. Cryst. 1993. Vol. 229. P. 97.

29. Marcel C., Tarascon J.-M. An all-plastic WO3•H2O/polyaniline electrochromic device // Solid State Ionics. 2001. Vol. 143. P. 89-101.


Review

For citations:


Tkachenko L.I., Nikolaeva G.V., Dremova N.N., Efimov O.N. ELECTROCHEMICAL PROPERTIES OF P-TOLUENESULPHONIC ACID-DOPED POLYANILINE FILMS IN Li APROTIC ELECTROLYTE. Alternative Energy and Ecology (ISJAEE). 2015;(13-14):139-147. (In Russ.) https://doi.org/10.15518/isjaee.2015.13-14.014

Views: 584


ISSN 1608-8298 (Print)