Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

SYNTHESIS AND MIXED CONDUCTIVITY OF Ce1-x-yLaxPryO2-δ FOR CATALYTICALLY ACTIVE INTERLAYERS OF SOLID OXIDE FUEL CELLS

https://doi.org/10.15518/isjaee. 2014.20.001

Abstract

Developments of high-efficiency solid oxide fuel cells (SOFCs) make it necessary to create multilayered electrode systems providing both a superior electrochemical activity and stability in the entire range of SOFC operation conditions. This work summarizes experimental results on the functional properties of fluorite-like Ce1-x-yLaxPryO2-δ (x=0.29-40, y=0.10-0.14) mixed conductors, which were synthesized by the glycine-nitrate technique and studied as potential materials of the catalytically active protective interlayers for the SOFC electrodes. Using the data on total conductivity as a function of the oxygen partial pressure varied from 0.35 atm down to 10-19 atm 973-1223 К, the defect formation and transport processes were modelled. Increasing praseodymium concentration was found to increase p-type electronic conduction under oxidizing conditions, whilst the dominant defect reaction at low oxygen chemical potentials is the reduction of cerium cations, leading to the formation of n-type electronic charge carriers. The chemical reactivity with lanthanum gallate-based solid electrolyte (LSGM) was assessed employing annealing of the powder mixtures and X-ray diffraction analysis. Model cells with perovskite-like PrBaFe1.2Ni0.8O5+δ electrodes and multifunctional Ce0.50La0.40Pr0.10O2-δ sublayers in contact with the lanthanum gallate solid-electrolyte membranes were evaluated by scanning electron microscopy.

About the Authors

Alexey Ivanov Ivanov
Institute of Solid State Physics RAS
Russian Federation


Azaliya Zagitova Zagitova
Institute of Solid State Physics RAS
Russian Federation


Sergey Bredikhin Bredikhin
Institute of Solid State Physics RAS
Russian Federation


Vladislav Kharton
Institute of Solid State Physics RAS; University of Aveiro
Russian Federation


References

1. Истомин С.Я., Антинов Е.В. Катодные материалы на основе перовскитонодобных оксидов нереходных металлов для среднетемнературных твердооксидных тонливных элементов // Уснехи химии. 2o13. Т. 82, № 7. С. 686-700.

2. Huang K., Wan J-H., Goodenough J.B. Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials // J. Electrochem. Soc. 2oo1. Vol. 148, № 7. P. 788-794.

3. Kuritsyna I., Sinitsyn V., Melnikov A., Fedotov Yu., Tsipis E., Viskup A., Bredikhin S., Kharton V. Oxygen exchange, thermochemical expansion and ca-thodic behavior of perovskite-like Sr0,7Ce0,3MnO3-δ // Solid State Ion. 2o14. Vol. 262. P. 349-353.

4. Fagg D.P., Frade J.R., Kharton V.V., Marozau I.P. The defect chemistry of Ce(Pr, Zr)O2-δ // J. Solid State Chem. 2oo6. Vol. 179. № 5. P. 1469-1477.

5. Stefanik T.S., Tuller H.L. Nonstoichiometry and Defect Chemistry in Praseodymium-Cerium Oxide // J. Electroceramics. 2oo4. Vol. 13. № 1-3. P. 799-8o3.

6. Stefanik T.S., Tuller H.L. Ceria-based gas sensors // J. European Ceramic Soc. 2001. Vol. 21. № 10. P. 1967-1970.

7. US Patent 3330697 МКИ C 04 B35/497. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor/Pechini M. 1967.

8. Patil K.C., Hegde M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. New Jersey: World Scientific, 2008.

9. Patrakeev M.V., Mitberg E.B., Lakhtin A.A., Leonidov I.A., Kozhevnikov V.L., Kharton V.V., Avdeev M., Marques F.M.B. Oxygen nonstoichiometry, conductivity and Seebeck coefficient of La0,3Sr0,7Fe1-xGaxO2,65+δ perovskites // J. Solid State Chem. 2002. Vol. 167. № 1. P. 203-213.

10. Чеботин В. H. Физическая химия твердого тела. М.: Химия, 1982.


Review

For citations:


Ivanov A.I., Zagitova A.Z., Bredikhin S.B., Kharton V. SYNTHESIS AND MIXED CONDUCTIVITY OF Ce1-x-yLaxPryO2-δ FOR CATALYTICALLY ACTIVE INTERLAYERS OF SOLID OXIDE FUEL CELLS. Alternative Energy and Ecology (ISJAEE). 2014;(20):15-25. (In Russ.) https://doi.org/10.15518/isjaee. 2014.20.001

Views: 399


ISSN 1608-8298 (Print)