Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

MACROSCOPIC SIMULATIONS OF TRANSPORT PROCESSES IN PLANAR SOLID OXIDE FUEL CELLS: AN EVALUATION OF PERFORMANCE-LIMITING FACTORS

https://doi.org/ 10.15518/isjaee. 2014.20.002

Abstract

Development of highly efficient and commercially viable solid oxide fuel cells (SOFCs) requires throughout optimization of all their components from micro- to macro-level, taking into account the device type, fabrication technologies, materials and application conditions. This work was focused on numerical modeling of the distributions of current density, temperature, fuel and oxidant concentrations in a planar SOFC with supporting solid-electrolyte membrane of stabilized zirconia, bilayered electrodes and stainless steel interconnectors of the Crofer 22 APU alloy. The simulations by the finite volume method, performed in order to determine major optimization factors of the single SOFC construction, made it possible to obtain realistic integral parameters close to the experimental data on la-boratory-scale SOFCs. The fact that the massive metallic current collectors in the planar SOFC configuration significantly suppress local inhomogeneities in the temperature field within entire examined current range was confirmed. The key optimization tasks include width and geometry of the contacts between interconnectors and electrodes, optimum gas-channel size for various fuels and catalysts, an evaluation of technologically feasible alternative types of the current collector configurations in order to avoid partly blocked edge zones with a low local current density, and experimental studies of the porous electrodes near the “current collector | electrode” interface edge where sintering and degradation processes may be induced by high currents. The boundary conditions for such simulations should be selected in the intermediate current range around the SOFC power density maximum in order to minimize limiting effects of mass-transport processes and to achieve the regimes necessary for practical applications.

About the Authors

Yuri Fedotov Fedotov
Institute of Solid State Physics RAS
Russian Federation


Denis Smirnov
Institute of Solid State Physics RAS
Russian Federation


Pavel Vorob’Ev
2Central Research Institute for Ship Electrotechnics and Technologies, Krylov State Scientific Center
Russian Federation


Vladislav Kharton
Institute of Solid State Physics RAS
Russian Federation


Sergey Bredikhin
Institute of Solid State Physics RAS
Russian Federation


References

1. Badwal S.P.S., Giddey S., Munnings C., Kulkarni A. Review of Progress in High Temperature Solid Oxide Fuel Cells // JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY. 2014. Vol. 50, No. 1. P. 23-37.

2. Mogensen M., Grunwaldt J.-D., Hendriksen P. V., Dam-Johansen K., Nielsen J. U.// Journal of Power Sources. 2012. Vol. 196. P. 25.

3. Weber A., Ivers-Tiffee E. Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications // Journal of Power Sources. 2004. Vol. 127. P. 273-283.

4. Страница Sunfire. Efficient Electricity Generator. URL : http ://www. sunfire.de/en/produkte/stacks/mk200-sofc-stack (Дата обращения: 16.07.2014)

5. Страница Nextech Materials. NexTech’s Solid Oxide Fuel Cell Technology. URL:http://www.nextechmaterials.com/energy/index.php ?option=com_content&view=article&id=14&Itemid=12 (Дата обращения: 15.09.2014)

6. Буклет Delphi. Delphi Solid Oxide Fuel Cell Stack. URL: http://delphi.com/pdf/ppd/cv/energy/solid-oxide-fuel-cell-stack.pdf (Дата обращения: 15.09.2014)

7. Буклет Hexis. Galileo - decentralised energy and heat supply with fuel cells. URL: http://www.hexis.com/downloads/hexis_prospekt_englis ch_web0703.pdf (Дата обращения: 15.09.2014)

8. Буклет Ceramic Fuel Cells Ltd. Fuel Cell Module for Highly Efficient Electricity. URL: http://www.cfcl.com.au/Assets/Files/Gennex_Brochure_ (EN)_Apr-2010.pdf (Дата обращения: 15.09.2014)

9. Hellman H.L. Van den Hoed R. Characterising Fuel Cell Technology: Challenges of the Commercialisation Process // International Journal of Hydrogen Energy. 2007. Vol. 32. P. 305-315.

10. James B.D., Kalinoski J., Baum K. Manufacturing Cost Analysis Of Fuel Cell Systems. 2011. URL: http ://www. hydrogen. energy.gov/pdfs/review11/fc018_j ames_2011_o.pdf (Дата обращения: 15.09.2014).

11. Andersson M., Yuan J., Sunden B. SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach // FUEL CELLS. 2014. Vol. 14, No. 2. P. 177-188.

12. Daneshvar K., Dotelli G., Cristiani C., Pelosato R., Santarelli M. Modeling and Parametric Study of a Single Solid Oxide Fuel Cell by Finite Element Method // FUEL CELLS. 2014. Vol. 14, No. 2. P. 189-199.

13. Boedec T., Reytier M., Lhachemi D., Tschumperle D., Louat P., Di Iorio S., Baurens P., Delette G. A New Stack to Validate Technical Solutions and Numerical Simulations // FUEL CELLS. 2012. Vol. 12, No. 2. P. 239-247.

14. Tachikawa Y., Hosoi T., Nishimura T., Shiratori Y., Taniguchi S., Sasaki K. Computational Study of Performance Drop Phenomena Based on Sulfur Adsorption and Desorption Model in Planar-Type SOFCs // ECS Transactions. 2013. Vol. 57, No. 1.P. 2841-2848.

15. Сайт разработчика ПО ANSYSURL: https://www.ansys.com/ (Дата обращения: 15.09.2014).

16. Kulikovsky A.A., Divisek J., Kornyshev A. A. Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells: Dead and Active Reaction Zones // Journal of Electrochemical Society. 1999. Vol. 146, No. 11. P. 3981-3991.

17. Mazumder S., Cole J.V. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions with Liquid Water Transport // Journal of Electrochemical Society. 2003. Vol. 150, No. 11. P. A1510-1517.

18. Um S., Wang C.Y., Chen K.S. Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells // Journal of Electrochemical Society. 2000. Vol. 147, No. 12. P. 4485-4493.

19. Crofer 22 APU Material Data Sheet No. 4046, May 2010 Edition, ThyssenKrupp VDM.


Review

For citations:


Fedotov Yu.F., Smirnov D., Vorob’Ev P., Kharton V., Bredikhin S. MACROSCOPIC SIMULATIONS OF TRANSPORT PROCESSES IN PLANAR SOLID OXIDE FUEL CELLS: AN EVALUATION OF PERFORMANCE-LIMITING FACTORS. Alternative Energy and Ecology (ISJAEE). 2014;(20):26-37. (In Russ.) https://doi.org/ 10.15518/isjaee. 2014.20.002

Views: 506


ISSN 1608-8298 (Print)