Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

COMBUSTION REACTIONS OF SOME “METAL-METAL OXIDE” SYSTEMS UNDER CONDITIONS OF ZERO AND APPLIED MAGNETIC FIELDS: TRXRD EXPERIMENTS

https://doi.org/ 10.15518/isjaee. 2014.20.004

Abstract

The effect of an external magnetic field of 0.2 T on the self-propagating high temperature syntheses (SHS) of a mixture of first row transition metals (Ni and Ti) and their oxides with and without addition of internal solid oxidizer (sodium perchlorate - NaClO4) was studied by time resolved X-ray diffraction using the Rietveld refinement for determination of phase percentages. The driving force for the reactions is the oxidation of the appropriate metal powder. Reactions typically reached temperatures in excess of 11500C with a timescale for the complete conversion of reactant to products of 20 s. This enabled accurate monitoring of the combustion process in particular propagation velocity, maximum temperature, cooling rates, synthesis wave width, and pathway. Several interesting phenomena, such as combustion wave segmentation were detected in some systems. All the final products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDXA) and scanning electron microscopy (SEM).

About the Authors

Rajeevan Sivasubramanaiam
University College London
Russian Federation


Gavin Vaughan
European Synchrotron Radiation Facility (ESRF)
Russian Federation


Maxim V. Kuznetsov
All-Russian Scientific-Research Institute for Problems of Civil Defense and Emergencies (Federal Center of Science and hi-Tech)
Russian Federation


Ivan P. Parkin
University College London
Russian Federation


References

1. Cabanas M.V., J.M.G.-C and Vallet-Regi M. Journal of Solid State Chemistry, 1995, 115, 347-352.

2. Merzhanov A.G. Ceramics International, 1995, 21, 371-379.

3. Parkin I.P. Chemistry and Industry, 1997, 18, 725-728.

4. Gillan E.G. and Kaner R.B. Chemistry of Materials, 1996, 8, 333.

5. Merzhanov A.G. Advanced Materials, 1990, 2, 570-572.

6. Merzhanov A.G. Advanced Materials, 1992, 4, 294-295.

7. Yi H.C. and Moore J.J. Journal of Materials Science, 1990, 25, 1159-1168.

8. Kirdyashkin A.I., Maksimov Y.M. and Merzhanov A.G. Combustion, Explosion and Shock Waves, 1986, 22(6), 700-706.

9. Komarov A.V., Morozov Yu.G., Avakyan P.B. and Nersesyan M.D. International Journal of Self-Propagating High-Temperature Synthesis, 3, 207, 1994; Parkin I.P., Pankhurst Q.A., Affleck L., Aguas M.D. and Kuznetsov M.V. Journal of Materials Chemistry, 2001, 11, 193-199.

10. Kirdyashkin A.I., Maksimov Y.M., Kitler V.D., Lepakova O.K., Burkin V.V. and Sinyaev S.V. Combustion, Explosion and Shock Waves, 1999, 35, 271.

11. Choi Y., Lee J.K. and Mullins M.E. Journal of Materials Science, 1997, 32, 1717.

12. L. Affleck, M.D. Aguas, Q.A. Pankhurst, I.P. Parkin and W.A. Steer, Advanced Materials., 2000, 12(18), 1359-1362.

13. Kuznetsov M.V., Pankhurst Q.A. and Parkin I.P. Journal of Physics D. Applied Physics., 31(20), 28862893, 1998; Kuznetsov M.V., Pankhurst Q.A. and Parkin I.P. Journal of Materials Chemistry., 8(12), 2701-2706, 1998; Kuznetsov M.V., Pankhurst Q.A. and Parkin I.P. Journal of Materials Chemistry, 1999, 9(1), 273-281.

14. Parkin I.P., Pankhurst Q.A., Affleck L., Aguas M.D., Kuznetsov M.V. Journal of Materials Chemistry, 2001, 11(1), 193-199.

15. Kachelmyer C.R., Khomenko I.O. and Roagachev A.S., The Journal of Materials Research, 1997, 12, 3230.

16. Javel J.F., Dirand M., Nassik F.Z. and Gachon J.C. Journal de Physique. 1996, IV, 6, C2-229.

17. Affleck L. "Self Propagating High Temperature Synthesis of Ferrities in Magnetic Fields", Ph.D Thesis, UCL, 2002.

18. Chen Y., Peng D.L., Lin D. and Luo X. Nanotechnology, 2007, 18, 1-6.

19. Spiers H. "Time resolved X-ray Diffraction and Thermal Imaging Studies of Magnesium Zinc Ferrites", Ph.D Thesis, UCL, 2004.

20. Hull A.W. Physical Review, 661-691, 1917.

21. Sasaki S., Fujino K. and Takeuchi Y. Proceedings of the Japanese Academy of Science, 1979, 55, 43-48.

22. Haglund J., Grimvall G., Jariborg T. and F.Fernandez Guillermet Physical Review B, 1991, 43, 14400-14408.

23. Haglund J., F.Fernandez Guillermet, Grimvall G. and Korling M. Physical Review B, 1993, 48, 11685-11691.

24. Hull A.W. Physical Review, 21, 402-407, 1923.

25. Hull A.W. Annalen der Physik, 1920, 61, 421-439.

26. Schmahl N.G., Barthel J. and Eikerling G.F. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1964, 332, 230-237.

27. Taylor D. Transactions and Journal of the British Ceramic Society, 1984, 83, 5-9.

28. Schmahl N.G. and Eikerling G.F. Zeitschrift fuer Physikalische Chemie, 1968, 62, 268-279.

29. Novoselova T., Malinov S., Sha W. and Zhecheva A. Materials Science and Engineering, 2004, 371, 103-112.

30. Loehman R.E., Rao C.N.R. and Honig J.M. Journal of Physical Chemistry, 1969, 73, 1781-1784.

31. Yu T.H., Lin J.S., Chao P., Fang C.S. and Huang C.S. Acta Geologica Sinica, 1974, 2, 218.

32. Lacks D.J. and Gordon R.G. Physical Review.B, 1993, 48, 2889-2908.

33. Glassford K.M. and Chelikowsky J.R. Physical Review B, 1992, 46, 1284-1298.


Review

For citations:


Sivasubramanaiam R., Vaughan G., Kuznetsov M.V., Parkin I.P. COMBUSTION REACTIONS OF SOME “METAL-METAL OXIDE” SYSTEMS UNDER CONDITIONS OF ZERO AND APPLIED MAGNETIC FIELDS: TRXRD EXPERIMENTS. Alternative Energy and Ecology (ISJAEE). 2014;(20):47-61. (In Russ.) https://doi.org/ 10.15518/isjaee. 2014.20.004

Views: 435


ISSN 1608-8298 (Print)