Preview

Alternative Energy and Ecology (ISJAEE)

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

PHYSICAL BASES OF TECHNOLOGY AND MATERIAL SCIENCE OF ULTRATHIN PALLADIUM ALLOY MEMBRANES FOR THE HYDROGEN SEPARATION FROM GAS MIXTURES

https://doi.org/ 10.15518/isjaee. 2014.20.009

Abstract

Palladium alloy film microstructure influence on hydrogen interaction with the films has been investigated. It was shown that during initial stages of the thin film growth (3 - 25 Å), microstructures of various types are formed depending on the film growth rate, growth temperature, chemical composition and morphology of the growth substrate. These initial microstructures are inherited by the films when their thickness grows to 30 -50 nm. As a result, the difference in the microstructures brings to the variability of thermodynamic and kinetic parameters of hydrogen interaction with alloy thin films, in particularly, the hydrogen solubility, the hydrogen diffusion in the alloys and hence the hydrogen permeability in the alloys. Roughness evolution during the thin films thermal treatment shows a stressed state immediately after the films growth. The stress extent of the films grown on the different substrates is different as well.

About the Authors

Vladimir Timofeevich Volkov
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation


Anatoli Fedorovich Vyatkin
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation


Valentin Georgievich Eremenko
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation


Yusif Alekberovich Kasumov
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation


Anastasia Sergeevna Kolchina
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Russian Federation


References

1. Вяткин А.Ф., Волков В.Т., Колчина А. С., Байчток Ю.К. Композитные мембраны для сепарации водорода; микроструктурные аспекты // Международный научный журнал «Альтернативная энергетика и экология» (ISJAEE). 2011. № 9 (101). C. 25-31.

2. Mekonnen W., Arstad B., Klette H., Walmsley J.C., Bredesen R., Venvik H., Holmestad R. Microstructural characterization of self-supported 1.6 pm Pd/Ag membranes // J. of Membrane Science. 2008. No 310. Р. 337-348.

3. Zhang Y., Gwak J., Murakoshi Y. Hydrogen permeation characteristics of thin Pd membrane prepared by microfabrication technology // J. of Membrane Science. 2006. № 277. P. 203-209.

4. Tucho W.M., Venvik H.Y., Stange M., Walmsley J.C., Holmestad R., Bredesen R. Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes // Separation and Purification Technology. 2009. № 68. P. 403-410.

5. Pizzi D., Worth R., Baschetti M.G., Giulio C. Sarti, Ken-ichi Noda. Hydrogen permeability of 2.5 μm palladium-silver membranes deposited on ceramic supports // J. of Membrane Science. 2008. № 325. P. 446-453.

6. Патент 2285748 РФ C23C 26/00, B81B 3/00, H04R 7/16. / Способ изготовления композиционных мембран на основе тонких пленок металлов / Вяткин А.Ф., Волков В.Т., Старков В.В. // 10.02.2006 Бюл. № 29.

7. Tucho W.M., Venvik H.Y., Stange M. J.C. Walmsley, R. Holmestad, R. Bredesen Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes // Separation and Purification Technology. 2009. № 68. P. 403-410.

8. Вяткин А.Ф., Волков В.Т., Еременко В.Г., Касумов Ю. А., Колчина А.С. Экспериментальные исследования начальных стадий роста тонких пленок сплава Pd-Ag // Поверхность, Рентгеновские, синхро-тронные и нейтронные исследования, поступила в редакцию 21.02.2014 (в печати).

9. Bartl M. H. Nanostructure-driven functionalities in thin films and coatings // Scripta Materialia, 2014. Vol. 74. P. 1-2.

10. Водород в металлах. Т. 2 C. 163. // М.: Издательство "Мир", 1981. 430 с.

11. Lewis F.A. Palladium Hydrogen System //Academic Press. London. 1967. P. 50.

12. Burger J.P., MacLachlan D.S., Mailfert R., Souffache B. Electrical resistivity of Pd-Hx: I. Residual resistivity // Solid State Communications. 1975. Vol. 17, No 3, P. 277-280.

13. Tripodi P., Avveduto A., Vinko J.D. Strain and resistivity of PdHx at hydrogen composition x > 0.8 // Journal of Alloys and Compounds. 2010. Vol. 500, No 1. P. 1-4.

14. Zhang W.-S., Zhang Z.-F., Zhang Z.-L. Some problems on the resistance method in the in situ measurement of hydrogen content in palladium electrode // Journal of Electroanalytical Chemistry. 2002. Vol. 528. P. 1-17.

15. Wang M., Feng Y. Palladium-silver thin film for hydrogen sensing // Sensors and Actuators B. 2007. Vol. 123. P. 101-106.

16. Offermans P., Tong H.D., C.J. M. van Rijn, Merken P., Brongersma S.H., Crego-Calama M. Ultra-low-power hydrogen sensing with single palladium nanowires // Applied Physics Letters. 2009. Vol. 94. P. 223110.

17. Kiefer T., Favier F., Vazquez-Mena O., Villanueva G., Brugger J. A single nanotrench in a palladium microwire for hydrogen detection // Nanotechnology. 2008. Vol. 19. P. 125502.

18. Rakesh K. Joshi, Subramanian Krishnan, Mashamichi Yoshimura, Ashok Kumar Pd Nanoparticles and Thin Films for Room Temperature Hydrogen Sensor // Nanoscale Research Letters. 2009. Vol. 4. P. 1191-1196.

19. Scharnagl K., Eriksson M. Hydrogen detection at high concentrations with stabilised palladium // Sensors and Actuators B. 2001. Vol. 78. P. 138-143.

20. Baranowski B., Filipek S.M., Szustakowski M., Farny J., Woryna W. Search for “cold-fusion” in some Me-D systems at high pressures of gaseous deuterium // Journal of the Less Common Metals. 1990. Vol. 158. P. 347-357.

21. Андреев Л.А., Вяткин А.Ф. Влияние поверхностных реакций на скорость взаимодействия водорода с алюминием // Физика металлов и металловедение. 1980. Т. 49, № 3ю С. 611-619.

22. Eastman J. A., Thompson L.J., Kestel B.J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium // Physical Review B. 1993. Vol. 48, No 1. P. 84-92.


Review

For citations:


Volkov V.T., Vyatkin A.F., Eremenko V.G., Kasumov Yu.A., Kolchina A.S. PHYSICAL BASES OF TECHNOLOGY AND MATERIAL SCIENCE OF ULTRATHIN PALLADIUM ALLOY MEMBRANES FOR THE HYDROGEN SEPARATION FROM GAS MIXTURES. Alternative Energy and Ecology (ISJAEE). 2014;(20):103-114. (In Russ.) https://doi.org/ 10.15518/isjaee. 2014.20.009

Views: 390


ISSN 1608-8298 (Print)